File size: 4,951 Bytes
34ffff8 57b4570 db00fdf 8bedea7 db00fdf 1a99552 2144e21 1a99552 ce4a094 1a99552 d04e3f5 1a99552 b08fc08 82fbc4d b08fc08 82fbc4d 4fa075e 1a99552 db00fdf 3b63347 db00fdf 3a4c793 db00fdf 3b63347 0e6207c 2258a85 0e6207c 3b63347 db00fdf 3b63347 0e6207c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
import tensorflow as tf
from tensorflow import keras
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn import preprocessing
import seaborn as sns
from sklearn.preprocessing import LabelEncoder
import streamlit as st
st.title("Rouge Component Prediction")
#Reading Dataset
df = pd.read_csv('identify_rogue_50K_ALL.csv')
print("Dataset Size:",df.shape)
st.sidebar.header('Enter the Components Details here')
# Dropping the SRU serial number
df.drop(['SRU serial number','Date of Manufacture','Last Maintenance Date','date of last failure'], axis = 1, inplace=True)
# DATA from user
def user_report():
manufacturer = st.sidebar.selectbox("Manufacturer",
("JKL Company", "GHI Company","AGS Company","ABC Company","XYZ Company" ))
if manufacturer=='JKL Company':
manufacturer=3
elif manufacturer=="GHI Company":
manufacturer=2
elif manufacturer=="AGS Company":
manufacturer=1
elif manufacturer=="ABC Company":
manufacturer =0
else:
manufacturer=4
component_age = st.sidebar.slider('Component Age (in hours)', 500,2000, 600 )
total_operating_hours = st.sidebar.slider('Total Operating Hours)', 50,2000, 500 )
usage_intensity = st.sidebar.slider('Usage Intensity hours/day', 0,9, 5 )
last_maintance_type = st.sidebar.selectbox('Last Mantainence Type', ("Preventive","Corrective") )
if last_maintance_type=="Preventive":
last_maintance_type=1
else:
last_maintance_type=0
previous_number_of_repairs = st.sidebar.number_input('Enter the Previous Number of Repairs Undergone 0 to 5 )',min_value=0,max_value=5,step=1)
operating_temperature = st.sidebar.slider('Operating Temperature', 10,25, 15 )
humidity = st.sidebar.slider('Humidity', 20,105, 25 )
Vibration_Level = st.sidebar.slider('Vibration Level', 2,7, 2 )
Pressure = st.sidebar.slider('Pressure', 200,550, 250 )
Power_Input_Voltage= st.sidebar.slider('Power Input Voltage (V)',100,133,115)
repair_type = st.sidebar.selectbox('Repair Type', ("Hardware","Software") )
if repair_type=='Hardware':
repair_type=0
else:
repair_type=1
number_of_inspection = st.sidebar.selectbox('Number of Inspections',('1','2'))
if number_of_inspection=='1':
number_of_inspection=1
else:
number_of_inspection=2
number_of_inspection_6months = st.sidebar.selectbox('Number of Inspections in last 6 Months',('0','1'))
if number_of_inspection_6months=='0':
number_of_inspection_6months=0
else:
number_of_inspection_6months=1
prior_maintainence = st.sidebar.selectbox('Prior Maintainence',("Regular","Irregular"))
if prior_maintainence =='Regular':
prior_maintainence=1
else:
prior_maintainence=0
user_report_data = {
'Manufacturer':manufacturer,
'Component_Age':component_age,
'Total Operating Hours':total_operating_hours,
'Usage Intensity (hours/day)':usage_intensity,
'Last Maintenance Type': last_maintance_type,
'Previous number of repairs':previous_number_of_repairs,
'Operating Temperature':operating_temperature,
'Humidity': humidity,
'Vibration Level':Vibration_Level,
'Pressure':Pressure,
'Power Input Voltage (V)':Power_Input_Voltage,
'repair type':repair_type ,
'total number of inspection':number_of_inspection,
'No. of Inspections in Last 6 Months':number_of_inspection_6months,
'Prior Maintenance':prior_maintainence
}
report_data = pd.DataFrame(user_report_data, index=[0])
return report_data
#Customer Data
user_data = user_report()
st.header("Component Details")
st.write(user_data)
def label_encoder(df):
le = LabelEncoder()
cat = df.select_dtypes(include='O').keys()
categ = list(cat)
df[categ] = df[categ].apply(le.fit_transform)
return df
def preprocess_dataset(X):
x = X.values #returns a numpy array
min_max_scaler = preprocessing.MinMaxScaler()
x_scaled = min_max_scaler.fit_transform(x)
X_df = pd.DataFrame(x_scaled)
return X_df
def prediction(df):
#X = df.loc[:,df.columns!= "Rogue LRU/SRU (Target)"]
#y = df["Rogue LRU/SRU (Target)"]
#X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=42)
#print(X_train.shape)
#print(X_test.shape)
X_test_encoded = label_encoder(df)
X_test_df = preprocess_dataset(X_test_encoded)
x_model = loaded_model = tf.keras.models.load_model('my_model')
y_pred = x_model.predict(X_test_df)
#predicition = []
#for i in list(y_pred):
if y_pred ==0:
return 'Rouge Component is Good'
else:
return 'Rouge Component is not good'
#X_test['Actual_time_to_repair'] = y_test
#X_test['Predicted_time_to_repair'] = predicition
# X_test.to_csv(r'/content/drive/MyDrive/Colab Notebooks/HAL/rogue_test_data.csv')
#print(X_test.head())
y_pred = prediction(user_data)
if st.button("Predict"):
st.subheader(y_pred) |