CoWork / app.py
Tinsae's picture
resize
06f5362
raw
history blame
2.79 kB
from PIL import Image
import numpy as np
from rembg import remove
import cv2
import os
from torchvision.transforms import GaussianBlur
import gradio as gr
import replicate
import requests
from io import BytesIO
def create_mask(input):
input_path = 'input.png'
bg_removed_path = 'bg_removed.png'
mask_name = 'blured_mask.png'
input.save(input_path)
bg_removed = remove(input)
width, height = bg_removed.size
max_dim = max(width, height)
square_img = Image.new('RGB', (max_dim, max_dim), (255, 255, 255))
paste_pos = ((max_dim - width) // 2, (max_dim - height) // 2)
square_img.paste(bg_removed, paste_pos)
square_img = square_img.resize((512, 512))
square_img.save(bg_removed_path)
img2_grayscale = square_img.convert('L')
img2_a = np.array(img2_grayscale)
mask = np.array(img2_grayscale)
threshhold = 0
mask[img2_a==threshhold] = 1
mask[img2_a>threshhold] = 0
strength = 1
d = int(255 * (1-strength))
mask *= 255-d
mask += d
mask = Image.fromarray(mask)
blur = GaussianBlur(11,20)
mask = blur(mask)
mask = mask.resize((512, 512))
mask.save(mask_name)
return Image.open(mask_name)
def generate_image(image, product_name, target_name):
mask = create_mask(image)
image = image.resize((512, 512))
mask = mask.resize((512,512))
guidance_scale=16
num_samples = 1
prompt = 'a product photography photo of' + product_name + ' on ' + target_name + 'high contrast, film photography, film grain, single light, no dof, soft light, caustic, strange pattern, neo dada style, analog led strip lighting, 190mm lens, grainy picture'
model = replicate.models.get("cjwbw/stable-diffusion-v2-inpainting")
version = model.versions.get("f9bb0632bfdceb83196e85521b9b55895f8ff3d1d3b487fd1973210c0eb30bec")
output = version.predict(prompt=prompt, image=open("bg_removed.png", "rb"), mask=open("blured_mask.png", "rb"))
response = requests.get(output[0])
return Image.open(BytesIO(response.content))
with gr.Blocks() as demo:
gr.Markdown("# Advertise better with AI")
# with gr.Tab("Prompt Paint - Basic"):
with gr.Row():
with gr.Column():
input_image = gr.Image(label = "Upload your product's photo", type = 'pil')
product_name = gr.Textbox(label="Describe your product")
target_name = gr.Textbox(label="Where do you want to put your product?")
# result_prompt = product_name + ' in ' + target_name + 'product photograpy ultrarealist'
image_button = gr.Button("Generate")
with gr.Column():
image_output = gr.Image()
image_button.click(generate_image, inputs=[input_image, product_name, target_name ], outputs=image_output, api_name='test')
demo.launch()