import spaces import gradio as gr import cv2 from PIL import Image import torch import time import numpy as np import uuid from transformers import RTDetrForObjectDetection, RTDetrImageProcessor # type: ignore from draw_boxes import draw_bounding_boxes image_processor = RTDetrImageProcessor.from_pretrained("PekingU/rtdetr_r50vd") model = RTDetrForObjectDetection.from_pretrained("PekingU/rtdetr_r50vd")#.to("cuda") SUBSAMPLE = 2 # @spaces.GPU def stream_object_detection(video, conf_threshold): cap = cv2.VideoCapture(video) video_codec = cv2.VideoWriter_fourcc(*"mp4v") # type: ignore fps = int(cap.get(cv2.CAP_PROP_FPS)) desired_fps = fps // SUBSAMPLE width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) // 2 height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) // 2 iterating, frame = cap.read() n_frames = 0 name = f"output_{uuid.uuid4()}.mp4" segment_file = cv2.VideoWriter(name, video_codec, desired_fps, (width, height)) # type: ignore batch = [] while iterating: frame = cv2.resize(frame, (0, 0), fx=0.5, fy=0.5) frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) if n_frames % SUBSAMPLE == 0: batch.append(frame) if len(batch) == 2 * desired_fps: inputs = image_processor(images=batch, return_tensors="pt")#.to("cuda") print(f"starting batch of size {len(batch)}") start = time.time() with torch.no_grad(): outputs = model(**inputs) end = time.time() print("time taken for inference", end - start) start = time.time() boxes = image_processor.post_process_object_detection( outputs, target_sizes=torch.tensor([(height, width)] * len(batch)), threshold=conf_threshold, ) for _, (array, box) in enumerate(zip(batch, boxes)): pil_image = draw_bounding_boxes( Image.fromarray(array), box, model, conf_threshold ) frame = np.array(pil_image) # Convert RGB to BGR frame = frame[:, :, ::-1].copy() segment_file.write(frame) batch = [] segment_file.release() yield name end = time.time() print("time taken for processing boxes", end - start) name = f"output_{uuid.uuid4()}.mp4" segment_file = cv2.VideoWriter( name, video_codec, desired_fps, (width, height) ) # type: ignore iterating, frame = cap.read() n_frames += 1 with gr.Blocks() as demo: gr.HTML( """