Spaces:
Runtime error
Runtime error
import gradio as gr | |
import cv2 | |
import torch | |
import numpy as np | |
from torchvision import transforms | |
title = "Background Remover" | |
description = "Automatically remove the image background from a profile photo." | |
article = "<p style='text-align: center'><a href='https://news.machinelearning.sg/posts/beautiful_profile_pics_remove_background_image_with_deeplabv3/'>Blog</a> | <a href='https://github.com/eugenesiow/practical-ml'>Github Repo</a></p>" | |
def make_transparent_foreground(pic, mask): | |
# split the image into channels | |
b, g, r = cv2.split(np.array(pic).astype('uint8')) | |
# add an alpha channel with and fill all with transparent pixels (max 255) | |
a = np.ones(mask.shape, dtype='uint8') * 255 | |
# merge the alpha channel back | |
alpha_im = cv2.merge([b, g, r, a], 4) | |
# create a transparent background | |
bg = np.zeros(alpha_im.shape) | |
# setup the new mask | |
new_mask = np.stack([mask, mask, mask, mask], axis=2) | |
# copy only the foreground color pixels from the original image where mask is set | |
foreground = np.where(new_mask, alpha_im, bg).astype(np.uint8) | |
return foreground | |
def remove_background(input_image): | |
preprocess = transforms.Compose([ | |
transforms.ToTensor(), | |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), | |
]) | |
input_tensor = preprocess(input_image) | |
input_batch = input_tensor.unsqueeze(0) # create a mini-batch as expected by the model | |
# move the input and model to GPU for speed if available | |
if torch.cuda.is_available(): | |
input_batch = input_batch.to('cuda') | |
model.to('cuda') | |
with torch.no_grad(): | |
output = model(input_batch)['out'][0] | |
output_predictions = output.argmax(0) | |
# create a binary (black and white) mask of the profile foreground | |
mask = output_predictions.byte().cpu().numpy() | |
background = np.zeros(mask.shape) | |
bin_mask = np.where(mask, 255, background).astype(np.uint8) | |
foreground = make_transparent_foreground(input_image, bin_mask) | |
return foreground, bin_mask | |
def inference(img): | |
foreground, _ = remove_background(img) | |
return foreground | |
model = torch.hub.load('pytorch/vision:v0.6.0', 'deeplabv3_resnet101', pretrained=True) | |
model.eval() | |
gr.Interface( | |
inference, | |
gr.inputs.Image(type="pil", label="Input"), | |
gr.outputs.Image(type="pil", label="Output"), | |
title=title, | |
description=description, | |
article=article, | |
examples=[['woman.jpg'], ['man.jpg']], | |
enable_queue=True | |
).launch(debug=False) |