Spaces:
TirthGPT
/
Runtime error

File size: 3,494 Bytes
2a8a75a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import numpy as np
import torch


def create_camera_to_world_matrix(elevation, azimuth):
    elevation = np.radians(elevation)
    azimuth = np.radians(azimuth)
    # Convert elevation and azimuth angles to Cartesian coordinates on a unit sphere
    x = np.cos(elevation) * np.sin(azimuth)
    y = np.sin(elevation)
    z = np.cos(elevation) * np.cos(azimuth)

    # Calculate camera position, target, and up vectors
    camera_pos = np.array([x, y, z])
    target = np.array([0, 0, 0])
    up = np.array([0, 1, 0])

    # Construct view matrix
    forward = target - camera_pos
    forward /= np.linalg.norm(forward)
    right = np.cross(forward, up)
    right /= np.linalg.norm(right)
    new_up = np.cross(right, forward)
    new_up /= np.linalg.norm(new_up)
    cam2world = np.eye(4)
    cam2world[:3, :3] = np.array([right, new_up, -forward]).T
    cam2world[:3, 3] = camera_pos
    return cam2world


def convert_opengl_to_blender(camera_matrix):
    if isinstance(camera_matrix, np.ndarray):
        # Construct transformation matrix to convert from OpenGL space to Blender space
        flip_yz = np.array([[1, 0, 0, 0], [0, 0, -1, 0], [0, 1, 0, 0], [0, 0, 0, 1]])
        camera_matrix_blender = np.dot(flip_yz, camera_matrix)
    else:
        # Construct transformation matrix to convert from OpenGL space to Blender space
        flip_yz = torch.tensor(
            [[1, 0, 0, 0], [0, 0, -1, 0], [0, 1, 0, 0], [0, 0, 0, 1]]
        )
        if camera_matrix.ndim == 3:
            flip_yz = flip_yz.unsqueeze(0)
        camera_matrix_blender = torch.matmul(flip_yz.to(camera_matrix), camera_matrix)
    return camera_matrix_blender


def normalize_camera(camera_matrix):
    """normalize the camera location onto a unit-sphere"""
    if isinstance(camera_matrix, np.ndarray):
        camera_matrix = camera_matrix.reshape(-1, 4, 4)
        translation = camera_matrix[:, :3, 3]
        translation = translation / (
            np.linalg.norm(translation, axis=1, keepdims=True) + 1e-8
        )
        camera_matrix[:, :3, 3] = translation
    else:
        camera_matrix = camera_matrix.reshape(-1, 4, 4)
        translation = camera_matrix[:, :3, 3]
        translation = translation / (
            torch.norm(translation, dim=1, keepdim=True) + 1e-8
        )
        camera_matrix[:, :3, 3] = translation
    return camera_matrix.reshape(-1, 16)


def get_camera(
    num_frames, 
    elevation=15, 
    azimuth_start=0, 
    azimuth_span=360, 
    blender_coord=True,
    extra_view=False,
):
    angle_gap = azimuth_span / num_frames
    cameras = []
    for azimuth in np.arange(azimuth_start, azimuth_span + azimuth_start, angle_gap):
        camera_matrix = create_camera_to_world_matrix(elevation, azimuth)
        if blender_coord:
            camera_matrix = convert_opengl_to_blender(camera_matrix)
        cameras.append(camera_matrix.flatten())
        
    if extra_view:
        dim = len(cameras[0])
        cameras.append(np.zeros(dim))  
    return torch.tensor(np.stack(cameras, 0)).float()


def get_camera_for_index(data_index):
    """
    按照当前我们的数据格式, 以000为正对我们的情况:
    000是正面, ev: 0, azimuth: 0
    001是左边, ev: 0, azimuth: -90
    002是下面, ev: -90, azimuth: 0
    003是背面, ev: 0, azimuth: 180
    004是右边, ev: 0, azimuth: 90
    005是上面, ev: 90, azimuth: 0
    """
    params = [(0, 0), (0, -90), (-90, 0), (0, 180), (0, 90), (90, 0)]
    return get_camera(1, *params[data_index])