|
import numpy as np |
|
import torch |
|
|
|
|
|
def create_camera_to_world_matrix(elevation, azimuth): |
|
elevation = np.radians(elevation) |
|
azimuth = np.radians(azimuth) |
|
|
|
x = np.cos(elevation) * np.sin(azimuth) |
|
y = np.sin(elevation) |
|
z = np.cos(elevation) * np.cos(azimuth) |
|
|
|
|
|
camera_pos = np.array([x, y, z]) |
|
target = np.array([0, 0, 0]) |
|
up = np.array([0, 1, 0]) |
|
|
|
|
|
forward = target - camera_pos |
|
forward /= np.linalg.norm(forward) |
|
right = np.cross(forward, up) |
|
right /= np.linalg.norm(right) |
|
new_up = np.cross(right, forward) |
|
new_up /= np.linalg.norm(new_up) |
|
cam2world = np.eye(4) |
|
cam2world[:3, :3] = np.array([right, new_up, -forward]).T |
|
cam2world[:3, 3] = camera_pos |
|
return cam2world |
|
|
|
|
|
def convert_opengl_to_blender(camera_matrix): |
|
if isinstance(camera_matrix, np.ndarray): |
|
|
|
flip_yz = np.array([[1, 0, 0, 0], [0, 0, -1, 0], [0, 1, 0, 0], [0, 0, 0, 1]]) |
|
camera_matrix_blender = np.dot(flip_yz, camera_matrix) |
|
else: |
|
|
|
flip_yz = torch.tensor( |
|
[[1, 0, 0, 0], [0, 0, -1, 0], [0, 1, 0, 0], [0, 0, 0, 1]] |
|
) |
|
if camera_matrix.ndim == 3: |
|
flip_yz = flip_yz.unsqueeze(0) |
|
camera_matrix_blender = torch.matmul(flip_yz.to(camera_matrix), camera_matrix) |
|
return camera_matrix_blender |
|
|
|
|
|
def normalize_camera(camera_matrix): |
|
"""normalize the camera location onto a unit-sphere""" |
|
if isinstance(camera_matrix, np.ndarray): |
|
camera_matrix = camera_matrix.reshape(-1, 4, 4) |
|
translation = camera_matrix[:, :3, 3] |
|
translation = translation / ( |
|
np.linalg.norm(translation, axis=1, keepdims=True) + 1e-8 |
|
) |
|
camera_matrix[:, :3, 3] = translation |
|
else: |
|
camera_matrix = camera_matrix.reshape(-1, 4, 4) |
|
translation = camera_matrix[:, :3, 3] |
|
translation = translation / ( |
|
torch.norm(translation, dim=1, keepdim=True) + 1e-8 |
|
) |
|
camera_matrix[:, :3, 3] = translation |
|
return camera_matrix.reshape(-1, 16) |
|
|
|
|
|
def get_camera( |
|
num_frames, |
|
elevation=15, |
|
azimuth_start=0, |
|
azimuth_span=360, |
|
blender_coord=True, |
|
extra_view=False, |
|
): |
|
angle_gap = azimuth_span / num_frames |
|
cameras = [] |
|
for azimuth in np.arange(azimuth_start, azimuth_span + azimuth_start, angle_gap): |
|
camera_matrix = create_camera_to_world_matrix(elevation, azimuth) |
|
if blender_coord: |
|
camera_matrix = convert_opengl_to_blender(camera_matrix) |
|
cameras.append(camera_matrix.flatten()) |
|
|
|
if extra_view: |
|
dim = len(cameras[0]) |
|
cameras.append(np.zeros(dim)) |
|
return torch.tensor(np.stack(cameras, 0)).float() |
|
|
|
|
|
def get_camera_for_index(data_index): |
|
""" |
|
按照当前我们的数据格式, 以000为正对我们的情况: |
|
000是正面, ev: 0, azimuth: 0 |
|
001是左边, ev: 0, azimuth: -90 |
|
002是下面, ev: -90, azimuth: 0 |
|
003是背面, ev: 0, azimuth: 180 |
|
004是右边, ev: 0, azimuth: 90 |
|
005是上面, ev: 90, azimuth: 0 |
|
""" |
|
params = [(0, 0), (0, -90), (-90, 0), (0, 180), (0, 90), (90, 0)] |
|
return get_camera(1, *params[data_index]) |