|
|
|
import spaces |
|
import argparse |
|
import numpy as np |
|
import gradio as gr |
|
from omegaconf import OmegaConf |
|
import torch |
|
from PIL import Image |
|
import PIL |
|
from pipelines import TwoStagePipeline |
|
from huggingface_hub import hf_hub_download |
|
import os |
|
import rembg |
|
from typing import Any |
|
import json |
|
import os |
|
import json |
|
import argparse |
|
|
|
from model import CRM |
|
from inference import generate3d |
|
|
|
pipeline = None |
|
rembg_session = rembg.new_session() |
|
|
|
|
|
def expand_to_square(image, bg_color=(0, 0, 0, 0)): |
|
|
|
width, height = image.size |
|
if width == height: |
|
return image |
|
new_size = (max(width, height), max(width, height)) |
|
new_image = Image.new("RGBA", new_size, bg_color) |
|
paste_position = ((new_size[0] - width) // 2, (new_size[1] - height) // 2) |
|
new_image.paste(image, paste_position) |
|
return new_image |
|
|
|
def check_input_image(input_image): |
|
if input_image is None: |
|
raise gr.Error("No image uploaded!") |
|
|
|
|
|
def remove_background( |
|
image: PIL.Image.Image, |
|
rembg_session: Any = None, |
|
force: bool = False, |
|
**rembg_kwargs, |
|
) -> PIL.Image.Image: |
|
do_remove = True |
|
if image.mode == "RGBA" and image.getextrema()[3][0] < 255: |
|
|
|
print("alhpa channl not enpty, skip remove background, using alpha channel as mask") |
|
background = Image.new("RGBA", image.size, (0, 0, 0, 0)) |
|
image = Image.alpha_composite(background, image) |
|
do_remove = False |
|
do_remove = do_remove or force |
|
if do_remove: |
|
image = rembg.remove(image, session=rembg_session, **rembg_kwargs) |
|
return image |
|
|
|
def do_resize_content(original_image: Image, scale_rate): |
|
|
|
if scale_rate != 1: |
|
|
|
new_size = tuple(int(dim * scale_rate) for dim in original_image.size) |
|
|
|
resized_image = original_image.resize(new_size) |
|
|
|
padded_image = Image.new("RGBA", original_image.size, (0, 0, 0, 0)) |
|
paste_position = ((original_image.width - resized_image.width) // 2, (original_image.height - resized_image.height) // 2) |
|
padded_image.paste(resized_image, paste_position) |
|
return padded_image |
|
else: |
|
return original_image |
|
|
|
def add_background(image, bg_color=(255, 255, 255)): |
|
|
|
background = Image.new("RGBA", image.size, bg_color) |
|
return Image.alpha_composite(background, image) |
|
|
|
|
|
def preprocess_image(image, background_choice, foreground_ratio, backgroud_color): |
|
""" |
|
input image is a pil image in RGBA, return RGB image |
|
""" |
|
print(background_choice) |
|
if background_choice == "Alpha as mask": |
|
background = Image.new("RGBA", image.size, (0, 0, 0, 0)) |
|
image = Image.alpha_composite(background, image) |
|
else: |
|
image = remove_background(image, rembg_session, force_remove=True) |
|
image = do_resize_content(image, foreground_ratio) |
|
image = expand_to_square(image) |
|
image = add_background(image, backgroud_color) |
|
return image.convert("RGB") |
|
|
|
@spaces.GPU |
|
def gen_image(input_image, seed, scale, step): |
|
global pipeline, model, args |
|
pipeline.set_seed(seed) |
|
rt_dict = pipeline(input_image, scale=scale, step=step) |
|
stage1_images = rt_dict["stage1_images"] |
|
stage2_images = rt_dict["stage2_images"] |
|
np_imgs = np.concatenate(stage1_images, 1) |
|
np_xyzs = np.concatenate(stage2_images, 1) |
|
|
|
glb_path, obj_path = generate3d(model, np_imgs, np_xyzs, args.device) |
|
return Image.fromarray(np_imgs), Image.fromarray(np_xyzs), glb_path, obj_path |
|
|
|
|
|
parser = argparse.ArgumentParser() |
|
parser.add_argument( |
|
"--stage1_config", |
|
type=str, |
|
default="configs/nf7_v3_SNR_rd_size_stroke.yaml", |
|
help="config for stage1", |
|
) |
|
parser.add_argument( |
|
"--stage2_config", |
|
type=str, |
|
default="configs/stage2-v2-snr.yaml", |
|
help="config for stage2", |
|
) |
|
|
|
parser.add_argument("--device", type=str, default="cuda") |
|
args = parser.parse_args() |
|
|
|
crm_path = hf_hub_download(repo_id="Zhengyi/CRM", filename="CRM.pth") |
|
specs = json.load(open("configs/specs_objaverse_total.json")) |
|
model = CRM(specs).to(args.device) |
|
model.load_state_dict(torch.load(crm_path, map_location = args.device), strict=False) |
|
|
|
stage1_config = OmegaConf.load(args.stage1_config).config |
|
stage2_config = OmegaConf.load(args.stage2_config).config |
|
stage2_sampler_config = stage2_config.sampler |
|
stage1_sampler_config = stage1_config.sampler |
|
|
|
stage1_model_config = stage1_config.models |
|
stage2_model_config = stage2_config.models |
|
|
|
xyz_path = hf_hub_download(repo_id="Zhengyi/CRM", filename="ccm-diffusion.pth") |
|
pixel_path = hf_hub_download(repo_id="Zhengyi/CRM", filename="pixel-diffusion.pth") |
|
stage1_model_config.resume = pixel_path |
|
stage2_model_config.resume = xyz_path |
|
|
|
pipeline = TwoStagePipeline( |
|
stage1_model_config, |
|
stage2_model_config, |
|
stage1_sampler_config, |
|
stage2_sampler_config, |
|
device=args.device, |
|
dtype=torch.float16 |
|
) |
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# CRM: Single Image to 3D Textured Mesh with Convolutional Reconstruction Model") |
|
with gr.Row(): |
|
with gr.Column(): |
|
with gr.Row(): |
|
image_input = gr.Image( |
|
label="Image input", |
|
image_mode="RGBA", |
|
sources="upload", |
|
type="pil", |
|
) |
|
processed_image = gr.Image(label="Processed Image", interactive=False, type="pil", image_mode="RGB") |
|
with gr.Row(): |
|
with gr.Column(): |
|
with gr.Row(): |
|
background_choice = gr.Radio([ |
|
"Alpha as mask", |
|
"Auto Remove background" |
|
], value="Alpha as mask", |
|
label="backgroud choice") |
|
|
|
|
|
back_groud_color = gr.ColorPicker(label="Background Color", value="#7F7F7F", interactive=False) |
|
foreground_ratio = gr.Slider( |
|
label="Foreground Ratio", |
|
minimum=0.5, |
|
maximum=1.0, |
|
value=1.0, |
|
step=0.05, |
|
) |
|
|
|
with gr.Column(): |
|
seed = gr.Number(value=1234, label="seed", precision=0) |
|
guidance_scale = gr.Number(value=5.5, minimum=3, maximum=10, label="guidance_scale") |
|
step = gr.Number(value=50, minimum=30, maximum=100, label="sample steps", precision=0) |
|
text_button = gr.Button("Generate 3D shape") |
|
gr.Examples( |
|
examples=[os.path.join("examples", i) for i in os.listdir("examples")], |
|
inputs=[image_input], |
|
) |
|
with gr.Column(): |
|
image_output = gr.Image(interactive=False, label="Output RGB image") |
|
xyz_ouput = gr.Image(interactive=False, label="Output CCM image") |
|
|
|
output_model = gr.Model3D( |
|
label="Output GLB", |
|
interactive=False, |
|
) |
|
gr.Markdown("Note: The GLB model shown here has a darker lighting and enlarged UV seams. Download for correct results.") |
|
output_obj = gr.File(interactive=False, label="Output OBJ") |
|
|
|
inputs = [ |
|
processed_image, |
|
seed, |
|
guidance_scale, |
|
step, |
|
] |
|
outputs = [ |
|
image_output, |
|
xyz_ouput, |
|
output_model, |
|
output_obj, |
|
] |
|
|
|
|
|
text_button.click(fn=check_input_image, inputs=[image_input]).success( |
|
fn=preprocess_image, |
|
inputs=[image_input, background_choice, foreground_ratio, back_groud_color], |
|
outputs=[processed_image], |
|
).success( |
|
fn=gen_image, |
|
inputs=inputs, |
|
outputs=outputs, |
|
) |
|
demo.queue().launch() |
|
|