|
import numpy as np |
|
import torch |
|
from imagedream.camera_utils import get_camera_for_index |
|
from imagedream.ldm.util import set_seed, add_random_background |
|
from libs.base_utils import do_resize_content |
|
from imagedream.ldm.models.diffusion.ddim import DDIMSampler |
|
from torchvision import transforms as T |
|
|
|
|
|
class ImageDreamDiffusion: |
|
def __init__( |
|
self, |
|
model, |
|
device, |
|
dtype, |
|
mode, |
|
num_frames, |
|
camera_views, |
|
ref_position, |
|
random_background=False, |
|
offset_noise=False, |
|
resize_rate=1, |
|
image_size=256, |
|
seed=1234, |
|
) -> None: |
|
assert mode in ["pixel", "local"] |
|
size = image_size |
|
self.seed = seed |
|
batch_size = max(4, num_frames) |
|
|
|
neg_texts = "uniform low no texture ugly, boring, bad anatomy, blurry, pixelated, obscure, unnatural colors, poor lighting, dull, and unclear." |
|
uc = model.get_learned_conditioning([neg_texts]).to(device) |
|
sampler = DDIMSampler(model) |
|
|
|
|
|
camera = [get_camera_for_index(i).squeeze() for i in camera_views] |
|
camera[ref_position] = torch.zeros_like(camera[ref_position]) |
|
camera = torch.stack(camera) |
|
camera = camera.repeat(batch_size // num_frames, 1).to(device) |
|
|
|
self.image_transform = T.Compose( |
|
[ |
|
T.Resize((size, size)), |
|
T.ToTensor(), |
|
T.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), |
|
] |
|
) |
|
self.dtype = dtype |
|
self.ref_position = ref_position |
|
self.mode = mode |
|
self.random_background = random_background |
|
self.resize_rate = resize_rate |
|
self.num_frames = num_frames |
|
self.size = size |
|
self.device = device |
|
self.batch_size = batch_size |
|
self.model = model |
|
self.sampler = sampler |
|
self.uc = uc |
|
self.camera = camera |
|
self.offset_noise = offset_noise |
|
|
|
@staticmethod |
|
def i2i( |
|
model, |
|
image_size, |
|
prompt, |
|
uc, |
|
sampler, |
|
ip=None, |
|
step=20, |
|
scale=5.0, |
|
batch_size=8, |
|
ddim_eta=0.0, |
|
dtype=torch.float32, |
|
device="cuda", |
|
camera=None, |
|
num_frames=4, |
|
pixel_control=False, |
|
transform=None, |
|
offset_noise=False, |
|
): |
|
""" The function supports additional image prompt. |
|
Args: |
|
model (_type_): the image dream model |
|
image_size (_type_): size of diffusion output (standard 256) |
|
prompt (_type_): text prompt for the image (prompt in type str) |
|
uc (_type_): unconditional vector (tensor in shape [1, 77, 1024]) |
|
sampler (_type_): imagedream.ldm.models.diffusion.ddim.DDIMSampler |
|
ip (Image, optional): the image prompt. Defaults to None. |
|
step (int, optional): _description_. Defaults to 20. |
|
scale (float, optional): _description_. Defaults to 7.5. |
|
batch_size (int, optional): _description_. Defaults to 8. |
|
ddim_eta (float, optional): _description_. Defaults to 0.0. |
|
dtype (_type_, optional): _description_. Defaults to torch.float32. |
|
device (str, optional): _description_. Defaults to "cuda". |
|
camera (_type_, optional): camera info in tensor, shape: torch.Size([5, 16]) mean: 0.11, std: 0.49, min: -1.00, max: 1.00 |
|
num_frames (int, optional): _num of frames (views) to generate |
|
pixel_control: whether to use pixel conditioning. Defaults to False, True when using pixel mode |
|
transform: Compose( |
|
Resize(size=(256, 256), interpolation=bilinear, max_size=None, antialias=warn) |
|
ToTensor() |
|
Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)) |
|
) |
|
""" |
|
ip_raw = ip |
|
if type(prompt) != list: |
|
prompt = [prompt] |
|
with torch.no_grad(), torch.autocast(device_type=torch.device(device).type, dtype=dtype): |
|
c = model.get_learned_conditioning(prompt).to( |
|
device |
|
) |
|
c_ = {"context": c.repeat(batch_size, 1, 1)} |
|
uc_ = {"context": uc.repeat(batch_size, 1, 1)} |
|
|
|
if camera is not None: |
|
c_["camera"] = uc_["camera"] = ( |
|
camera |
|
) |
|
c_["num_frames"] = uc_["num_frames"] = num_frames |
|
|
|
if ip is not None: |
|
ip_embed = model.get_learned_image_conditioning(ip).to( |
|
device |
|
) |
|
ip_ = ip_embed.repeat(batch_size, 1, 1) |
|
c_["ip"] = ip_ |
|
uc_["ip"] = torch.zeros_like(ip_) |
|
|
|
if pixel_control: |
|
assert camera is not None |
|
ip = transform(ip).to( |
|
device |
|
) |
|
ip_img = model.get_first_stage_encoding( |
|
model.encode_first_stage(ip[None, :, :, :]) |
|
) |
|
c_["ip_img"] = ip_img |
|
uc_["ip_img"] = torch.zeros_like(ip_img) |
|
|
|
shape = [4, image_size // 8, image_size // 8] |
|
if offset_noise: |
|
ref = transform(ip_raw).to(device) |
|
ref_latent = model.get_first_stage_encoding(model.encode_first_stage(ref[None, :, :, :])) |
|
ref_mean = ref_latent.mean(dim=(-1, -2), keepdim=True) |
|
time_steps = torch.randint(model.num_timesteps - 1, model.num_timesteps, (batch_size,), device=device) |
|
x_T = model.q_sample(torch.ones([batch_size] + shape, device=device) * ref_mean, time_steps) |
|
|
|
samples_ddim, _ = ( |
|
sampler.sample( |
|
S=step, |
|
conditioning=c_, |
|
batch_size=batch_size, |
|
shape=shape, |
|
verbose=False, |
|
unconditional_guidance_scale=scale, |
|
unconditional_conditioning=uc_, |
|
eta=ddim_eta, |
|
x_T=x_T if offset_noise else None, |
|
) |
|
) |
|
|
|
x_sample = model.decode_first_stage(samples_ddim) |
|
x_sample = torch.clamp((x_sample + 1.0) / 2.0, min=0.0, max=1.0) |
|
x_sample = 255.0 * x_sample.permute(0, 2, 3, 1).cpu().numpy() |
|
|
|
return list(x_sample.astype(np.uint8)) |
|
|
|
def diffuse(self, t, ip, n_test=2): |
|
set_seed(self.seed) |
|
ip = do_resize_content(ip, self.resize_rate) |
|
if self.random_background: |
|
ip = add_random_background(ip) |
|
|
|
images = [] |
|
for _ in range(n_test): |
|
img = self.i2i( |
|
self.model, |
|
self.size, |
|
t, |
|
self.uc, |
|
self.sampler, |
|
ip=ip, |
|
step=50, |
|
scale=5, |
|
batch_size=self.batch_size, |
|
ddim_eta=0.0, |
|
dtype=self.dtype, |
|
device=self.device, |
|
camera=self.camera, |
|
num_frames=self.num_frames, |
|
pixel_control=(self.mode == "pixel"), |
|
transform=self.image_transform, |
|
offset_noise=self.offset_noise, |
|
) |
|
img = np.concatenate(img, 1) |
|
img = np.concatenate((img, ip.resize((self.size, self.size))), axis=1) |
|
images.append(img) |
|
set_seed() |
|
return images |
|
|
|
|
|
class ImageDreamDiffusionStage2: |
|
def __init__( |
|
self, |
|
model, |
|
device, |
|
dtype, |
|
num_frames, |
|
camera_views, |
|
ref_position, |
|
random_background=False, |
|
offset_noise=False, |
|
resize_rate=1, |
|
mode="pixel", |
|
image_size=256, |
|
seed=1234, |
|
) -> None: |
|
assert mode in ["pixel", "local"] |
|
|
|
size = image_size |
|
self.seed = seed |
|
batch_size = max(4, num_frames) |
|
|
|
neg_texts = "uniform low no texture ugly, boring, bad anatomy, blurry, pixelated, obscure, unnatural colors, poor lighting, dull, and unclear." |
|
uc = model.get_learned_conditioning([neg_texts]).to(device) |
|
sampler = DDIMSampler(model) |
|
|
|
|
|
camera = [get_camera_for_index(i).squeeze() for i in camera_views] |
|
if ref_position is not None: |
|
camera[ref_position] = torch.zeros_like(camera[ref_position]) |
|
camera = torch.stack(camera) |
|
camera = camera.repeat(batch_size // num_frames, 1).to(device) |
|
|
|
self.image_transform = T.Compose( |
|
[ |
|
T.Resize((size, size)), |
|
T.ToTensor(), |
|
T.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), |
|
] |
|
) |
|
|
|
self.dtype = dtype |
|
self.mode = mode |
|
self.ref_position = ref_position |
|
self.random_background = random_background |
|
self.resize_rate = resize_rate |
|
self.num_frames = num_frames |
|
self.size = size |
|
self.device = device |
|
self.batch_size = batch_size |
|
self.model = model |
|
self.sampler = sampler |
|
self.uc = uc |
|
self.camera = camera |
|
self.offset_noise = offset_noise |
|
|
|
@staticmethod |
|
def i2iStage2( |
|
model, |
|
image_size, |
|
prompt, |
|
uc, |
|
sampler, |
|
pixel_images, |
|
ip=None, |
|
step=20, |
|
scale=5.0, |
|
batch_size=8, |
|
ddim_eta=0.0, |
|
dtype=torch.float32, |
|
device="cuda", |
|
camera=None, |
|
num_frames=4, |
|
pixel_control=False, |
|
transform=None, |
|
offset_noise=False, |
|
): |
|
ip_raw = ip |
|
if type(prompt) != list: |
|
prompt = [prompt] |
|
with torch.no_grad(), torch.autocast(device_type=torch.device(device).type, dtype=dtype): |
|
c = model.get_learned_conditioning(prompt).to( |
|
device |
|
) |
|
c_ = {"context": c.repeat(batch_size, 1, 1)} |
|
uc_ = {"context": uc.repeat(batch_size, 1, 1)} |
|
|
|
if camera is not None: |
|
c_["camera"] = uc_["camera"] = ( |
|
camera |
|
) |
|
c_["num_frames"] = uc_["num_frames"] = num_frames |
|
|
|
if ip is not None: |
|
ip_embed = model.get_learned_image_conditioning(ip).to( |
|
device |
|
) |
|
ip_ = ip_embed.repeat(batch_size, 1, 1) |
|
c_["ip"] = ip_ |
|
uc_["ip"] = torch.zeros_like(ip_) |
|
|
|
if pixel_control: |
|
assert camera is not None |
|
|
|
transed_pixel_images = torch.stack([transform(i).to(device) for i in pixel_images]) |
|
latent_pixel_images = model.get_first_stage_encoding(model.encode_first_stage(transed_pixel_images)) |
|
|
|
c_["pixel_images"] = latent_pixel_images |
|
uc_["pixel_images"] = torch.zeros_like(latent_pixel_images) |
|
|
|
shape = [4, image_size // 8, image_size // 8] |
|
if offset_noise: |
|
ref = transform(ip_raw).to(device) |
|
ref_latent = model.get_first_stage_encoding(model.encode_first_stage(ref[None, :, :, :])) |
|
ref_mean = ref_latent.mean(dim=(-1, -2), keepdim=True) |
|
time_steps = torch.randint(model.num_timesteps - 1, model.num_timesteps, (batch_size,), device=device) |
|
x_T = model.q_sample(torch.ones([batch_size] + shape, device=device) * ref_mean, time_steps) |
|
|
|
samples_ddim, _ = ( |
|
sampler.sample( |
|
S=step, |
|
conditioning=c_, |
|
batch_size=batch_size, |
|
shape=shape, |
|
verbose=False, |
|
unconditional_guidance_scale=scale, |
|
unconditional_conditioning=uc_, |
|
eta=ddim_eta, |
|
x_T=x_T if offset_noise else None, |
|
) |
|
) |
|
x_sample = model.decode_first_stage(samples_ddim) |
|
x_sample = torch.clamp((x_sample + 1.0) / 2.0, min=0.0, max=1.0) |
|
x_sample = 255.0 * x_sample.permute(0, 2, 3, 1).cpu().numpy() |
|
|
|
return list(x_sample.astype(np.uint8)) |
|
|
|
@torch.no_grad() |
|
def diffuse(self, t, ip, pixel_images, n_test=2): |
|
set_seed(self.seed) |
|
ip = do_resize_content(ip, self.resize_rate) |
|
pixel_images = [do_resize_content(i, self.resize_rate) for i in pixel_images] |
|
|
|
if self.random_background: |
|
bg_color = np.random.rand() * 255 |
|
ip = add_random_background(ip, bg_color) |
|
pixel_images = [add_random_background(i, bg_color) for i in pixel_images] |
|
|
|
images = [] |
|
for _ in range(n_test): |
|
img = self.i2iStage2( |
|
self.model, |
|
self.size, |
|
t, |
|
self.uc, |
|
self.sampler, |
|
pixel_images=pixel_images, |
|
ip=ip, |
|
step=50, |
|
scale=5, |
|
batch_size=self.batch_size, |
|
ddim_eta=0.0, |
|
dtype=self.dtype, |
|
device=self.device, |
|
camera=self.camera, |
|
num_frames=self.num_frames, |
|
pixel_control=(self.mode == "pixel"), |
|
transform=self.image_transform, |
|
offset_noise=self.offset_noise, |
|
) |
|
img = np.concatenate(img, 1) |
|
img = np.concatenate( |
|
(img, ip.resize((self.size, self.size)), *[i.resize((self.size, self.size)) for i in pixel_images]), |
|
axis=1, |
|
) |
|
images.append(img) |
|
set_seed() |
|
return images |
|
|