Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -9,6 +9,8 @@ from torchvision.models import resnet50
|
|
9 |
|
10 |
# Initialize inference client for chat
|
11 |
chat_client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
|
|
|
|
12 |
|
13 |
# Load pre-trained image classification model
|
14 |
model = resnet50(pretrained=True)
|
@@ -21,15 +23,14 @@ transform = transforms.Compose([
|
|
21 |
])
|
22 |
|
23 |
def search_wikipedia(query):
|
24 |
-
|
25 |
-
|
26 |
-
return summary
|
27 |
-
|
28 |
-
return f"Disambiguation error: {e}"
|
29 |
-
except wikipedia.exceptions.PageError:
|
30 |
return "No information found on that topic."
|
31 |
|
32 |
def respond(message, history, system_message, max_tokens, temperature, top_p):
|
|
|
33 |
search_response = search_wikipedia(message)
|
34 |
|
35 |
# Prepare the chat messages
|
@@ -62,53 +63,57 @@ def classify_image(image):
|
|
62 |
_, predicted = torch.max(output, 1)
|
63 |
return f"Predicted class index: {predicted.item()}"
|
64 |
|
65 |
-
# Placeholder functions for video generation and classification
|
66 |
-
def generate_video(video):
|
67 |
-
return video # Placeholder: Just returns the input video for now
|
68 |
-
|
69 |
-
def classify_video(video):
|
70 |
-
return "Video classification logic not implemented." # Placeholder
|
71 |
-
|
72 |
# Gradio interface setup using Blocks
|
73 |
with gr.Blocks() as demo:
|
74 |
gr.Markdown("## Multi-Functional AI Interface")
|
75 |
|
76 |
-
with gr.
|
77 |
-
with gr.
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
submit_btn = gr.Button("Send")
|
87 |
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
|
|
|
|
|
|
|
|
|
|
102 |
|
103 |
-
|
104 |
-
|
105 |
-
|
|
|
|
|
|
|
|
|
|
|
106 |
|
107 |
-
|
108 |
-
submit_btn.click(on_submit, inputs=[user_input, chat_output], outputs=[chat_output, gr.Textbox(label="Wikipedia Summary")])
|
109 |
-
classify_btn.click(classify_image, inputs=image_input, outputs=classification_output)
|
110 |
-
generate_video_btn.click(generate_video, inputs=video_input, outputs=video_output)
|
111 |
-
classify_video_btn.click(classify_video, inputs=video_class_input, outputs=video_classification_output)
|
112 |
|
113 |
if __name__ == "__main__":
|
114 |
demo.launch()
|
|
|
9 |
|
10 |
# Initialize inference client for chat
|
11 |
chat_client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
12 |
+
# Initialize Wikipedia API
|
13 |
+
wiki_wiki = wikipediaapi.Wikipedia('en')
|
14 |
|
15 |
# Load pre-trained image classification model
|
16 |
model = resnet50(pretrained=True)
|
|
|
23 |
])
|
24 |
|
25 |
def search_wikipedia(query):
|
26 |
+
page = wiki_wiki.page(query)
|
27 |
+
if page.exists():
|
28 |
+
return page.summary
|
29 |
+
else:
|
|
|
|
|
30 |
return "No information found on that topic."
|
31 |
|
32 |
def respond(message, history, system_message, max_tokens, temperature, top_p):
|
33 |
+
# Search Wikipedia for information
|
34 |
search_response = search_wikipedia(message)
|
35 |
|
36 |
# Prepare the chat messages
|
|
|
63 |
_, predicted = torch.max(output, 1)
|
64 |
return f"Predicted class index: {predicted.item()}"
|
65 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
# Gradio interface setup using Blocks
|
67 |
with gr.Blocks() as demo:
|
68 |
gr.Markdown("## Multi-Functional AI Interface")
|
69 |
|
70 |
+
with gr.Tab("Chatbot with Wikipedia Search"):
|
71 |
+
with gr.Row():
|
72 |
+
with gr.Column():
|
73 |
+
system_message = gr.Textbox(value="You are a friendly Chatbot named Tirth.", label="System message")
|
74 |
+
max_tokens = gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens")
|
75 |
+
temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature")
|
76 |
+
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)")
|
77 |
+
|
78 |
+
with gr.Column():
|
79 |
+
chat_output = gr.Chatbot(label="Chat History")
|
80 |
+
user_input = gr.Textbox(placeholder="Type your message here...", label="Your Message")
|
81 |
+
submit_btn = gr.Button("Send")
|
82 |
|
83 |
+
def on_submit(message, history):
|
84 |
+
response, search_response = respond(message, history, system_message.value, max_tokens.value, temperature.value, top_p.value)
|
85 |
+
return history + [(message, response)], search_response
|
|
|
86 |
|
87 |
+
submit_btn.click(on_submit, inputs=[user_input, chat_output], outputs=[chat_output, gr.Textbox(label="Wikipedia Summary")])
|
88 |
+
|
89 |
+
with gr.Tab("Image Classification"):
|
90 |
+
image_input = gr.Image(type="pil", label="Upload an Image")
|
91 |
+
classify_btn = gr.Button("Classify Image")
|
92 |
+
classification_output = gr.Textbox(label="Classification Result")
|
93 |
+
|
94 |
+
classify_btn.click(classify_image, inputs=image_input, outputs=classification_output)
|
95 |
+
|
96 |
+
with gr.Tab("Video Generation"):
|
97 |
+
video_input = gr.Video(label="Upload a Video")
|
98 |
+
generate_video_btn = gr.Button("Generate Video")
|
99 |
+
video_output = gr.Video(label="Generated Video")
|
100 |
+
|
101 |
+
# Placeholder for video generation logic (implement as needed)
|
102 |
+
def generate_video(video):
|
103 |
+
return video # Just returns the input video for now
|
104 |
+
|
105 |
+
generate_video_btn.click(generate_video, inputs=video_input, outputs=video_output)
|
106 |
|
107 |
+
with gr.Tab("Video Classification"):
|
108 |
+
video_class_input = gr.Video(label="Upload a Video for Classification")
|
109 |
+
classify_video_btn = gr.Button("Classify Video")
|
110 |
+
video_classification_output = gr.Textbox(label="Video Classification Result")
|
111 |
+
|
112 |
+
# Placeholder for video classification logic (implement as needed)
|
113 |
+
def classify_video(video):
|
114 |
+
return "Video classification logic not implemented." # Placeholder
|
115 |
|
116 |
+
classify_video_btn.click(classify_video, inputs=video_class_input, outputs=video_classification_output)
|
|
|
|
|
|
|
|
|
117 |
|
118 |
if __name__ == "__main__":
|
119 |
demo.launch()
|