TirthGPT commited on
Commit
fb42732
1 Parent(s): eef2ace
Files changed (1) hide show
  1. app.py +39 -35
app.py CHANGED
@@ -1,32 +1,35 @@
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
  client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
 
 
8
 
 
 
 
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
  messages = [{"role": "system", "content": system_message}]
19
-
20
  for val in history:
21
  if val[0]:
22
  messages.append({"role": "user", "content": val[0]})
23
  if val[1]:
24
  messages.append({"role": "assistant", "content": val[1]})
25
-
26
  messages.append({"role": "user", "content": message})
27
-
 
28
  response = ""
29
-
30
  for message in client.chat_completion(
31
  messages,
32
  max_tokens=max_tokens,
@@ -35,30 +38,31 @@ def respond(
35
  top_p=top_p,
36
  ):
37
  token = message.choices[0].delta.content
38
-
39
  response += token
40
- yield response
41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42
 
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot named Tirth.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
 
 
 
62
 
63
  if __name__ == "__main__":
64
  demo.launch()
 
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
+ import wikipediaapi
4
 
5
+ # Initialize inference client for chat
 
 
6
  client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
7
+ # Initialize Wikipedia API
8
+ wiki_wiki = wikipediaapi.Wikipedia('en')
9
 
10
+ def search_wikipedia(query):
11
+ page = wiki_wiki.page(query)
12
+ if page.exists():
13
+ return page.summary
14
+ else:
15
+ return "No information found on that topic."
16
 
17
+ def respond(message, history, system_message, max_tokens, temperature, top_p):
18
+ # Search Wikipedia for information
19
+ search_response = search_wikipedia(message)
20
+
21
+ # Prepare the chat messages
 
 
 
22
  messages = [{"role": "system", "content": system_message}]
 
23
  for val in history:
24
  if val[0]:
25
  messages.append({"role": "user", "content": val[0]})
26
  if val[1]:
27
  messages.append({"role": "assistant", "content": val[1]})
28
+
29
  messages.append({"role": "user", "content": message})
30
+
31
+ # Generate response from chat model
32
  response = ""
 
33
  for message in client.chat_completion(
34
  messages,
35
  max_tokens=max_tokens,
 
38
  top_p=top_p,
39
  ):
40
  token = message.choices[0].delta.content
 
41
  response += token
42
+ yield response, search_response # Return both responses
43
 
44
+ # Gradio interface setup using Blocks
45
+ with gr.Blocks() as demo:
46
+ gr.Markdown("## Chatbot with Wikipedia Search")
47
+ with gr.Row():
48
+ with gr.Column():
49
+ system_message = gr.Textbox(value="You are a friendly Chatbot named Tirth.", label="System message")
50
+ max_tokens = gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens")
51
+ temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature")
52
+ top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)")
53
+
54
+ with gr.Column():
55
+ chat_output = gr.Chatbox(label="Chat History")
56
+ user_input = gr.Textbox(placeholder="Type your message here...", label="Your Message")
57
+ submit_btn = gr.Button("Send")
58
 
59
+ # Function to handle button click
60
+ def on_submit(message, history):
61
+ response, search_response = respond(message, history, system_message.value, max_tokens.value, temperature.value, top_p.value)
62
+ return history + [(message, response)], search_response
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63
 
64
+ # Connect the button to the submission function
65
+ submit_btn.click(on_submit, inputs=[user_input, chat_output], outputs=[chat_output, gr.Textbox(label="Wikipedia Summary")])
66
 
67
  if __name__ == "__main__":
68
  demo.launch()