M2UGen330-Demo / llama /projector.py
Atin Sakkeer Hussain
Add Model
795ce43
import torch
from torch import nn
class ProjectionLayer(nn.Module):
"""Layers used in mapping text embeddings to visual outputs."""
def __init__(self, in_dim: int, out_dim: int, num_input_tokens: int = 1, num_output_tokens: int = 1):
super().__init__()
self.num_input_tokens = num_input_tokens
self.num_output_tokens = num_output_tokens
self.out_dim = out_dim
hidden_dim = 512
self.fc = nn.Linear(in_dim, hidden_dim)
self.tfm = nn.Transformer(batch_first=True, norm_first=False,
d_model=hidden_dim, num_encoder_layers=4, num_decoder_layers=4,
dim_feedforward=hidden_dim * 4, dropout=0.0, nhead=4)
self.model = nn.Linear(hidden_dim, out_dim)
self.query_embs = nn.Parameter(torch.randn(1, num_output_tokens, hidden_dim))
def forward(self, x: torch.Tensor, input_embs: torch.Tensor) -> torch.Tensor:
outputs = None
x = x + input_embs
x = self.fc(x)
x = self.tfm(x, self.query_embs.repeat(x.shape[0], 1, 1))
outputs = self.model(x)
assert outputs.shape[1] == 1 or (
outputs.shape[1] * outputs.shape[2] == self.num_output_tokens * self.out_dim), (
outputs.shape, self.num_output_tokens)
return outputs # (N, T_I_V_A.txt, D)