ToletiSri commited on
Commit
8c26685
1 Parent(s): 39e7e19

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +26 -11
app.py CHANGED
@@ -1,18 +1,33 @@
1
- !pip install git+https://github.com/openai/CLIP.git
2
-
3
- from PIL import Image
4
- import requests
5
-
6
  from transformers import CLIPProcessor, CLIPModel
7
 
8
  model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
9
  processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
10
 
11
- url = "http://images.cocodataset.org/val2017/000000039769.jpg"
12
- image = Image.open(requests.get(url, stream=True).raw)
13
 
14
- inputs = processor(text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
 
16
- outputs = model(**inputs)
17
- logits_per_image = outputs.logits_per_image # this is the image-text similarity score
18
- probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities
 
 
 
 
 
 
1
  from transformers import CLIPProcessor, CLIPModel
2
 
3
  model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
4
  processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
5
 
 
 
6
 
7
+ def inference(input_img, captions):
8
+ captions_list = captions.split(",")
9
+ #url = "http://images.cocodataset.org/val2017/000000039769.jpg"
10
+ #image = Image.open(requests.get(url, stream=True).raw)
11
+ inputs = processor(text=captions_list, images=input_img, return_tensors="pt", padding=True)
12
+ outputs = model(**inputs)
13
+ logits_per_image = outputs.logits_per_image # this is the image-text similarity score
14
+ probs = logits_per_image.softmax(dim=1)
15
+ probabilities_percentages = ', '.join(['{:.2f}%'.format(prob.item() * 100) for prob in probs[0]])
16
+ return probabilities_percentages
17
+
18
+ title = "TSAI S18 Assignment: Use a pretrained CLIP model and give a demo on its workig"
19
+ description = "A simple Gradio interface that accepts an image and some captions, and gives a score as to how much the caption describes the image "
20
+
21
+ examples = [["cats.jpg","a photo of a cat, a photo of a dog"]
22
+ ]
23
+
24
+ demo = gr.Interface(
25
+ inference,
26
+ inputs = [gr.Image(shape=(416, 416), label="Input Image"), gr.Textbox(placeholder="Enter different captions for image, separated by comma")],
27
+ outputs = [gr.Textbox(label="Probability score of captions")],
28
+ title = title,
29
+ description = description,
30
+ examples = examples,
31
+ )
32
 
33
+ demo.launch()