Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
4 |
+
|
5 |
+
model = AutoModelForCausalLM.from_pretrained("checkpoint",trust_remote_code=True)
|
6 |
+
tokenizer = AutoTokenizer.from_pretrained("checkpoint", trust_remote_code=True)
|
7 |
+
tokenizer.pad_token = tokenizer.eos_token
|
8 |
+
|
9 |
+
def inference(prompt, count):
|
10 |
+
pipe = pipeline(task="text-generation", model=model, tokenizer=tokenizer, max_length=200)
|
11 |
+
result = pipe(f"### Human: {prompt}",max_new_tokens=count)
|
12 |
+
out_text = result[0]['generated_text']
|
13 |
+
return out_text
|
14 |
+
|
15 |
+
title = "TSAI S21 Assignment: Adaptive QLoRA training on open assist oasst1 dataset, using microsoft/phi2 model"
|
16 |
+
description = "A simple Gradio interface that accepts a context and generates GPT like text "
|
17 |
+
examples = [["What is a large language model?","200"],
|
18 |
+
["Explain about monopsony","200"]
|
19 |
+
]
|
20 |
+
|
21 |
+
|
22 |
+
demo = gr.Interface(
|
23 |
+
inference,
|
24 |
+
inputs = [gr.Textbox(placeholder="Enter a prompt"), gr.Textbox(placeholder="Enter number of characters you want to generate")],
|
25 |
+
outputs = [gr.Textbox(label="Chat GPT like text")],
|
26 |
+
title = title,
|
27 |
+
description = description,
|
28 |
+
examples = examples
|
29 |
+
)
|
30 |
+
demo.launch()
|