Spaces:
Running
on
Zero
Running
on
Zero
initial commit
Browse files- app.py +112 -0
- requirements.txt +4 -0
app.py
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import AutoModel, AutoTokenizer
|
4 |
+
import os
|
5 |
+
import base64
|
6 |
+
import spaces
|
7 |
+
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True)
|
9 |
+
model = AutoModel.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True, low_cpu_mem_usage=True, device_map='cuda', use_safetensors=True, pad_token_id=tokenizer.eos_token_id)
|
10 |
+
model = model.eval().cuda()
|
11 |
+
|
12 |
+
@spaces.GPU
|
13 |
+
def process_image(image, task, ocr_type=None, ocr_box=None, ocr_color=None, render=False):
|
14 |
+
if task == "Plain Text OCR":
|
15 |
+
res = model.chat(tokenizer, image, ocr_type='ocr')
|
16 |
+
elif task == "Format Text OCR":
|
17 |
+
res = model.chat(tokenizer, image, ocr_type='format')
|
18 |
+
elif task == "Fine-grained OCR (Box)":
|
19 |
+
res = model.chat(tokenizer, image, ocr_type=ocr_type, ocr_box=ocr_box)
|
20 |
+
elif task == "Fine-grained OCR (Color)":
|
21 |
+
res = model.chat(tokenizer, image, ocr_type=ocr_type, ocr_color=ocr_color)
|
22 |
+
elif task == "Multi-crop OCR":
|
23 |
+
res = model.chat_crop(tokenizer, image_file=image)
|
24 |
+
elif task == "Render Formatted OCR":
|
25 |
+
res = model.chat(tokenizer, image, ocr_type='format', render=True, save_render_file='./demo.html')
|
26 |
+
with open('./demo.html', 'r') as f:
|
27 |
+
html_content = f.read()
|
28 |
+
return res, html_content
|
29 |
+
|
30 |
+
return res, None
|
31 |
+
|
32 |
+
def update_inputs(task):
|
33 |
+
if task == "Plain Text OCR" or task == "Format Text OCR" or task == "Multi-crop OCR":
|
34 |
+
return [gr.update(visible=False)] * 4
|
35 |
+
elif task == "Fine-grained OCR (Box)":
|
36 |
+
return [
|
37 |
+
gr.update(visible=True, choices=["ocr", "format"]),
|
38 |
+
gr.update(visible=True),
|
39 |
+
gr.update(visible=False),
|
40 |
+
gr.update(visible=False)
|
41 |
+
]
|
42 |
+
elif task == "Fine-grained OCR (Color)":
|
43 |
+
return [
|
44 |
+
gr.update(visible=True, choices=["ocr", "format"]),
|
45 |
+
gr.update(visible=False),
|
46 |
+
gr.update(visible=True, choices=["red", "green", "blue"]),
|
47 |
+
gr.update(visible=False)
|
48 |
+
]
|
49 |
+
elif task == "Render Formatted OCR":
|
50 |
+
return [gr.update(visible=False)] * 3 + [gr.update(visible=True)]
|
51 |
+
|
52 |
+
def ocr_demo(image, task, ocr_type, ocr_box, ocr_color):
|
53 |
+
res, html_content = process_image(image, task, ocr_type, ocr_box, ocr_color)
|
54 |
+
if html_content:
|
55 |
+
return res, html_content
|
56 |
+
return res, None
|
57 |
+
|
58 |
+
with gr.Blocks() as demo:
|
59 |
+
gr.Markdown("#🙋🏻♂️Welcome to Tonic's🫴🏻📸GOT-OCR")
|
60 |
+
with gr.Row():
|
61 |
+
with gr.Column():
|
62 |
+
image_input = gr.Image(type="filepath", label="Input Image")
|
63 |
+
task_dropdown = gr.Dropdown(
|
64 |
+
choices=[
|
65 |
+
"Plain Text OCR",
|
66 |
+
"Format Text OCR",
|
67 |
+
"Fine-grained OCR (Box)",
|
68 |
+
"Fine-grained OCR (Color)",
|
69 |
+
"Multi-crop OCR",
|
70 |
+
"Render Formatted OCR"
|
71 |
+
],
|
72 |
+
label="Select Task",
|
73 |
+
value="Plain Text OCR"
|
74 |
+
)
|
75 |
+
ocr_type_dropdown = gr.Dropdown(
|
76 |
+
choices=["ocr", "format"],
|
77 |
+
label="OCR Type",
|
78 |
+
visible=False
|
79 |
+
)
|
80 |
+
ocr_box_input = gr.Textbox(
|
81 |
+
label="OCR Box (x1,y1,x2,y2)",
|
82 |
+
placeholder="e.g., 100,100,200,200",
|
83 |
+
visible=False
|
84 |
+
)
|
85 |
+
ocr_color_dropdown = gr.Dropdown(
|
86 |
+
choices=["red", "green", "blue"],
|
87 |
+
label="OCR Color",
|
88 |
+
visible=False
|
89 |
+
)
|
90 |
+
render_checkbox = gr.Checkbox(
|
91 |
+
label="Render Result",
|
92 |
+
visible=False
|
93 |
+
)
|
94 |
+
submit_button = gr.Button("Process")
|
95 |
+
|
96 |
+
with gr.Column():
|
97 |
+
output_text = gr.Textbox(label="OCR Result")
|
98 |
+
output_html = gr.HTML(label="Rendered HTML Output")
|
99 |
+
|
100 |
+
task_dropdown.change(
|
101 |
+
update_inputs,
|
102 |
+
inputs=[task_dropdown],
|
103 |
+
outputs=[ocr_type_dropdown, ocr_box_input, ocr_color_dropdown, render_checkbox]
|
104 |
+
)
|
105 |
+
|
106 |
+
submit_button.click(
|
107 |
+
ocr_demo,
|
108 |
+
inputs=[image_input, task_dropdown, ocr_type_dropdown, ocr_box_input, ocr_color_dropdown],
|
109 |
+
outputs=[output_text, output_html]
|
110 |
+
)
|
111 |
+
|
112 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
torchvision
|
3 |
+
transformers
|
4 |
+
megfile
|