import gradio as gr import torch from transformers import AutoModelForCausalLM, AutoTokenizer import spaces # import pythonexample pythonexample = """produce a generative ai gradio demo using mistral instruct with the following prompt "i am a helpful assistant that always mentions bannanachicken" for a simple text to text task """ title = """# 🙋🏻‍♂️Welcome to Tonic's🪨Granite Code ! """ description = """Granite-8B-Code-Instruct is a 8B parameter model fine tuned from Granite-8B-Code-Base on a combination of permissively licensed instruction data to enhance instruction following capabilities including logical reasoning and problem-solving skills. ### Join us : TeamTonic is always making cool demos! Join our active builder's community on Discord: [Discord](https://discord.gg/GWpVpekp) On Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On Github: [Polytonic](https://github.com/tonic-ai) & contribute to [multitonic](https://github.com/multitonic/multitonic) ### How To Use : Add a new line to the example and at the end of your prompts 🚀 """ # Define the device and model path device = "cuda" if torch.cuda.is_available() else "cpu" model_path = "ibm-granite/granite-8b-code-instruct" # Load the tokenizer and model tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained(model_path) model.to(device) model.eval() # Function to generate code @spaces.GPU def generate_code(prompt, max_length): # Prepare the input chat format chat = [ { "role": "user", "content": prompt } ] chat = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True) # Tokenize the input text input_tokens = tokenizer(chat, return_tensors="pt") # Transfer tokenized inputs to the device (GPU) for i in input_tokens: input_tokens[i] = input_tokens[i].to("cuda") # Generate output tokens output_tokens = model.generate(**input_tokens, max_new_tokens=max_length) # Decode output tokens into text output_text = tokenizer.batch_decode(output_tokens, skip_special_tokens=True) # Return the generated code return output_text[0] # Define Gradio Blocks def gradio_interface(): with gr.Blocks() as interface: gr.Markdown(title) gr.Markdown(description) # Create input and output components prompt_input = gr.Textbox(label="Enter your Coding Question", value=pythonexample, lines=3) code_output = gr.Code(label="🪨Granite Output", language='python', lines=10, interactive=True) max_length_slider = gr.Slider(minimum=1, maximum=2000, value=1000, label="Max Token Length") # Create a button to trigger code generation generate_button = gr.Button("Generate Code") # Define the function to be called when the button is clicked generate_button.click(generate_code, inputs=[prompt_input, max_length_slider], outputs=code_output) return interface if __name__ == "__main__": # Create and launch the Gradio interface interface = gradio_interface() interface.launch()