Spaces:
Runtime error
Runtime error
File size: 3,295 Bytes
962a551 b993b81 962a551 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
import argparse
from transformers import AutoTokenizer, AutoModelForCausalLM, StoppingCriteria
import torch
import os
import json
from tqdm import tqdm
import shortuuid
from prometheus.conversation import default_conversation
from prometheus.utils import disable_torch_init
# new stopping implementation
class KeywordsStoppingCriteria(StoppingCriteria):
def __init__(self, keywords, tokenizer, input_ids):
self.keywords = keywords
self.tokenizer = tokenizer
self.start_len = None
self.input_ids = input_ids
def __call__(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
if self.start_len is None:
self.start_len = self.input_ids.shape[1]
else:
outputs = self.tokenizer.batch_decode(output_ids[:, self.start_len:], skip_special_tokens=True)[0]
for keyword in self.keywords:
if keyword in outputs:
return True
return False
@torch.inference_mode()
def eval_model(model_name, questions_file, answers_file):
# Model
disable_torch_init()
model_name = os.path.expanduser(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)
model = AutoModelForCausalLM.from_pretrained(model_name,
torch_dtype=torch.float16).cuda()
ques_file = open(os.path.expanduser(questions_file), "r")
ans_file = open(os.path.expanduser(answers_file), "w")
for i, line in enumerate(tqdm(ques_file)):
idx = json.loads(line)["question_id"]
qs = json.loads(line)["text"]
cat = json.loads(line)["category"]
conv = default_conversation.copy()
conv.append_message(conv.roles[0], qs)
prompt = conv.get_prompt()
inputs = tokenizer([prompt])
input_ids = torch.as_tensor(inputs.input_ids).cuda()
stopping_criteria = KeywordsStoppingCriteria([conv.sep], tokenizer, input_ids)
output_ids = model.generate(
input_ids,
do_sample=True,
use_cache=True,
temperature=0.7,
max_new_tokens=1024,
stopping_criteria=[stopping_criteria])
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0]
try:
index = outputs.index(conv.sep, len(prompt))
except ValueError:
outputs += conv.sep
index = outputs.index(conv.sep, len(prompt))
outputs = outputs[len(prompt) + len(conv.roles[1]) + 2:index].strip()
ans_id = shortuuid.uuid()
ans_file.write(json.dumps({"question_id": idx,
"text": outputs,
"answer_id": ans_id,
"model_id": model_name,
"metadata": {}}) + "\n")
ans_file.flush()
ans_file.close()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model-name", type=str, default="facebook/opt-350m")
parser.add_argument("--question-file", type=str, default="tables/question.jsonl")
parser.add_argument("--answers-file", type=str, default="answer.jsonl")
args = parser.parse_args()
eval_model(args.model_name, args.question_file, args.answers_file)
|