File size: 6,566 Bytes
962a551
 
 
 
 
 
 
b993b81
 
 
 
 
962a551
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import argparse
import torch
import os
import json
from tqdm import tqdm
import shortuuid

from prometheus.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
from prometheus.conversation import conv_templates, SeparatorStyle
from prometheus.model.builder import load_pretrained_model
from prometheus.utils import disable_torch_init
from prometheus.mm_utils import tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria

from PIL import Image
import math


def split_list(lst, n):
    """Split a list into n (roughly) equal-sized chunks"""
    chunk_size = math.ceil(len(lst) / n)  # integer division
    return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)]


def get_chunk(lst, n, k):
    chunks = split_list(lst, n)
    return chunks[k]


def eval_model(args):
    # Model
    disable_torch_init()
    model_path = os.path.expanduser(args.model_path)
    model_name = get_model_name_from_path(model_path)
    tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, args.model_base, model_name)

    questions = json.load(open(os.path.expanduser(args.question_file), "r"))
    questions = get_chunk(questions, args.num_chunks, args.chunk_idx)
    answers_file = os.path.expanduser(args.answers_file)
    os.makedirs(os.path.dirname(answers_file), exist_ok=True)
    ans_file = open(answers_file, "w")
    for i, line in enumerate(tqdm(questions)):
        idx = line["id"]
        question = line['conversations'][0]
        qs = question['value'].replace('<image>', '').strip()
        cur_prompt = qs

        if 'image' in line:
            image_file = line["image"]
            image = Image.open(os.path.join(args.image_folder, image_file))
            image_tensor = image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
            images = image_tensor.unsqueeze(0).half().cuda()
            if getattr(model.config, 'mm_use_im_start_end', False):
                qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + qs
            else:
                qs = DEFAULT_IMAGE_TOKEN + '\n' + qs
            cur_prompt = '<image>' + '\n' + cur_prompt
        else:
            images = None

        if args.single_pred_prompt:
            qs = qs + '\n' + "Answer with the option's letter from the given choices directly."
            cur_prompt = cur_prompt + '\n' + "Answer with the option's letter from the given choices directly."

        conv = conv_templates[args.conv_mode].copy()
        conv.append_message(conv.roles[0], qs)
        conv.append_message(conv.roles[1], None)
        prompt = conv.get_prompt()

        input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda()

        stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
        keywords = [stop_str]
        stopping_criteria = [KeywordsStoppingCriteria(keywords, tokenizer, input_ids)] if conv.version == "v0" else None

        with torch.inference_mode():
            output_ids = model.generate(
                input_ids,
                images=images,
                do_sample=True if args.temperature > 0 else False,
                temperature=args.temperature,
                max_new_tokens=1024,
                use_cache=True,
                stopping_criteria=stopping_criteria,
            )

        input_token_len = input_ids.shape[1]
        n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item()
        if n_diff_input_output > 0:
            print(f'[Warning] {n_diff_input_output} output_ids are not the same as the input_ids')
        outputs = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0]
        outputs = outputs.strip()
        if outputs.endswith(stop_str):
            outputs = outputs[:-len(stop_str)]
        outputs = outputs.strip()

        # prompt for answer
        if args.answer_prompter:
            outputs_reasoning = outputs
            input_ids = tokenizer_image_token(prompt + outputs_reasoning + ' ###\nANSWER:', tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda()

            with torch.inference_mode():
                output_ids = model.generate(
                    input_ids,
                    images=images,
                    do_sample=True if args.temperature > 0 else False,
                    temperature=args.temperature,
                    max_new_tokens=64,
                    use_cache=True,
                    stopping_criteria=[stopping_criteria])

            input_token_len = input_ids.shape[1]
            n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item()
            if n_diff_input_output > 0:
                print(f'[Warning] {n_diff_input_output} output_ids are not the same as the input_ids')
            outputs = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0]
            outputs = outputs.strip()
            if outputs.endswith(stop_str):
                outputs = outputs[:-len(stop_str)]
            outputs = outputs.strip()
            outputs = outputs_reasoning + '\n The answer is ' + outputs

        ans_id = shortuuid.uuid()
        ans_file.write(json.dumps({"question_id": idx,
                                   "prompt": cur_prompt,
                                   "text": outputs,
                                   "answer_id": ans_id,
                                   "model_id": model_name,
                                   "metadata": {}}) + "\n")
        ans_file.flush()
    ans_file.close()

if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--model-path", type=str, default="facebook/opt-350m")
    parser.add_argument("--model-base", type=str, default=None)
    parser.add_argument("--image-folder", type=str, default="")
    parser.add_argument("--question-file", type=str, default="tables/question.json")
    parser.add_argument("--answers-file", type=str, default="answer.jsonl")
    parser.add_argument("--conv-mode", type=str, default="llava_v0")
    parser.add_argument("--num-chunks", type=int, default=1)
    parser.add_argument("--chunk-idx", type=int, default=0)
    parser.add_argument("--temperature", type=float, default=0.2)
    parser.add_argument("--answer-prompter", action="store_true")
    parser.add_argument("--single-pred-prompt", action="store_true")
    args = parser.parse_args()

    eval_model(args)