import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM import torch from datetime import datetime # Model initialization model_id = "BSC-LT/salamandra-2b-instruct" device = "cuda" if torch.cuda.is_available() else "cpu" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, device_map="auto", torch_dtype=torch.bfloat16 ) # if tokenizer.pad_token_id is None: # tokenizer.pad_token_id = tokenizer.eos_token_id description = """ Salamandra-2b-instruct is a Transformer-based decoder-only language model that has been pre-trained on 7.8 trillion tokens of highly curated data. The pre-training corpus contains text in 35 European languages and code. This instruction-tuned variant can be used as a general-purpose assistant. """ join_us = """ ## Join us: 🌟TeamTonic🌟 is always making cool demos! Join our active builder's 🛠️community 👻 [![Join us on Discord](https://img.shields.io/discord/1109943800132010065?label=Discord&logo=discord&style=flat-square)](https://discord.gg/qdfnvSPcqP) On 🤗Huggingface: [MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Tonic-AI](https://github.com/tonic-ai) & contribute to🌟 [Build Tonic](https://git.tonic-ai.com/contribute) 🤗Big thanks to Yuvi Sharma and all the folks at huggingface for the community grant 🤗 """ def generate_text(system_prompt, user_prompt, temperature, max_new_tokens, top_p, repetition_penalty): date_string = datetime.today().strftime('%Y-%m-%d') messages = [ {"role": "system", "content": system_prompt}, {"role": "user", "content": user_prompt} ] chat_prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, date_string=date_string ) inputs = tokenizer(chat_prompt, return_tensors="pt", padding=True, truncation=True) # inputs = {k: v.to(model.device) for k, v in inputs.items()} outputs = model.generate( **inputs, max_new_tokens=max_new_tokens, temperature=temperature, top_p=top_p, repetition_penalty=repetition_penalty, do_sample=True, pad_token_id=tokenizer.pad_token_id, eos_token_id=tokenizer.eos_token_id, ) generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) return generated_text.split("assistant\n")[-1].strip() def update_output(system_prompt, user_prompt, temperature, max_new_tokens, top_p, repetition_penalty): return generate_text(system_prompt, user_prompt, temperature, max_new_tokens, top_p, repetition_penalty) with gr.Blocks() as demo: gr.Markdown("# 🦎 Welcome to Tonic's Salamandra-2b-instruct Demo") with gr.Row(): with gr.Column(scale=1): with gr.Group(): gr.Markdown(description) with gr.Column(scale=1): with gr.Group(): gr.Markdown(join_us) with gr.Row(): with gr.Column(scale=1): system_prompt = gr.Textbox( lines=3, label="🖥️ System Prompt", value="You are Tonic-ai a senior expert assistant known for their abilities to explain and answer questions." ) user_prompt = gr.Textbox(lines=5, label="🙋‍♂️ User Prompt") generate_button = gr.Button("Generate with 🦎 Salamandra-2b-instruct") with gr.Accordion("🧪 Parameters", open=False): temperature = gr.Slider(0.0, 1.0, value=0.7, label="🌡️ Temperature") max_new_tokens = gr.Slider(1, 2046, value=450, step=1, label="🔢 Max New Tokens") top_p = gr.Slider(0.0, 1.0, value=0.95, label="⚛️ Top P") repetition_penalty = gr.Slider(1.0, 2.0, value=1.2, label="🔁 Repetition Penalty") with gr.Column(scale=1): output = gr.Textbox(lines=10, label="🦎 Salamandra-2b-instruct Output") generate_button.click( update_output, inputs=[system_prompt, user_prompt, temperature, max_new_tokens, top_p, repetition_penalty], outputs=output ) gr.Examples( examples=[ ["You are a helpful assistant.", "What are the main advantages of living in a big city like Barcelona?"], ["You are a biology teacher explaining concepts to students.", "Explain the process of photosynthesis in simple terms."], ["You are a language learning expert.", "What are some effective strategies for learning a new language?"], ["You are an AI and technology expert.", "Describe the potential impacts of artificial intelligence on the job market in the next decade."], ["You are an environmental scientist.", "What are the key differences between renewable and non-renewable energy sources?"] ], inputs=[system_prompt, user_prompt], outputs=[system_prompt, user_prompt], label="Example Prompts" ) if __name__ == "__main__": demo.launch()