Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,30 +1,29 @@
|
|
1 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
2 |
-
import gradio as gr
|
3 |
-
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
-
|
6 |
-
tokenizer.padding_side = 'left'
|
7 |
-
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium")
|
8 |
-
|
9 |
-
class ChatBot:
|
10 |
-
def __init__(self):
|
11 |
-
self.history = []
|
12 |
-
|
13 |
-
def predict(self, input):
|
14 |
-
new_user_input_ids = tokenizer.encode(input + tokenizer.eos_token, return_tensors="pt")
|
15 |
-
flat_history = [item for sublist in self.history for item in sublist]
|
16 |
-
flat_history_tensor = torch.tensor(flat_history).unsqueeze(dim=0) # convert list to 2-D tensor
|
17 |
-
bot_input_ids = torch.cat([flat_history_tensor, new_user_input_ids], dim=-1) if self.history else new_user_input_ids
|
18 |
-
chat_history_ids = model.generate(bot_input_ids, max_length=2000, pad_token_id=tokenizer.eos_token_id)
|
19 |
-
self.history.append(chat_history_ids[:, bot_input_ids.shape[-1]:].tolist()[0])
|
20 |
-
response = tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)
|
21 |
-
return response
|
22 |
-
|
23 |
-
|
24 |
-
bot = ChatBot()
|
25 |
|
26 |
title = "👋🏻Welcome to Tonic's EZ Chat🚀"
|
27 |
-
description = "You can use this Space to test out the current model (DialoGPT-medium) or duplicate this Space and use it for any other model on 🤗HuggingFace."
|
28 |
examples = [["How are you?"]]
|
29 |
|
30 |
iface = gr.Interface(
|
|
|
1 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
2 |
+
import gradio as gr
|
3 |
+
import torch
|
4 |
+
|
5 |
+
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
|
6 |
+
tokenizer.padding_side = 'left'
|
7 |
+
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium")
|
8 |
+
|
9 |
+
class ChatBot:
|
10 |
+
def __init__(self):
|
11 |
+
self.history = []
|
12 |
+
|
13 |
+
def predict(self, input):
|
14 |
+
new_user_input_ids = tokenizer.encode(input + tokenizer.eos_token, return_tensors="pt")
|
15 |
+
flat_history = [item for sublist in self.history for item in sublist]
|
16 |
+
flat_history_tensor = torch.tensor(flat_history).unsqueeze(dim=0) # convert list to 2-D tensor
|
17 |
+
bot_input_ids = torch.cat([flat_history_tensor, new_user_input_ids], dim=-1) if self.history else new_user_input_ids
|
18 |
+
chat_history_ids = model.generate(bot_input_ids, max_length=2000, pad_token_id=tokenizer.eos_token_id)
|
19 |
+
self.history.append(chat_history_ids[:, bot_input_ids.shape[-1]:].tolist()[0])
|
20 |
+
response = tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)
|
21 |
+
return response
|
22 |
|
23 |
+
bot = ChatBot()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
title = "👋🏻Welcome to Tonic's EZ Chat🚀"
|
26 |
+
description = "You can use this Space to test out the current model (DialoGPT-medium) or duplicate this Space and use it for any other model on 🤗HuggingFace. Join me on [Discord](https://discord.gg/fpEPNZGsbt) to build together."
|
27 |
examples = [["How are you?"]]
|
28 |
|
29 |
iface = gr.Interface(
|