Tonic commited on
Commit
ece93a7
1 Parent(s): 72b512b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +15 -13
app.py CHANGED
@@ -7,6 +7,9 @@ from transformers import AutoConfig, AutoTokenizer, AutoModelForSeq2SeqLM, AutoM
7
  from peft import PeftModel, PeftConfig
8
  import torch
9
  import gradio as gr
 
 
 
10
 
11
  # Functions to Wrap the Prompt Correctly
12
  def wrap_text(text, width=90):
@@ -14,7 +17,6 @@ def wrap_text(text, width=90):
14
  wrapped_lines = [textwrap.fill(line, width=width) for line in lines]
15
  wrapped_text = '\n'.join(wrapped_lines)
16
  return wrapped_text
17
-
18
  def multimodal_prompt(user_input, system_prompt="You are an expert medical analyst:"):
19
  """
20
  Generates text using a large language model, given a user input and a system prompt.
@@ -25,7 +27,7 @@ def multimodal_prompt(user_input, system_prompt="You are an expert medical analy
25
  A string containing the generated text.
26
  """
27
  # Combine user input and system prompt
28
- formatted_input = f"<s>[INST]{system_prompt} {user_input}[/INST]"
29
 
30
  # Encode the input text
31
  encodeds = tokenizer(formatted_input, return_tensors="pt", add_special_tokens=False)
@@ -53,12 +55,12 @@ def multimodal_prompt(user_input, system_prompt="You are an expert medical analy
53
  device = "cuda" if torch.cuda.is_available() else "cpu"
54
 
55
  # Use the base model's ID
56
- base_model_id = "mistralai/Mistral-7B-v0.1"
57
- model_directory = "Tonic/mistralmed"
58
 
59
  # Instantiate the Tokenizer
60
- tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1", trust_remote_code=True, padding_side="left")
61
- # tokenizer = AutoTokenizer.from_pretrained("Tonic/mistralmed", trust_remote_code=True, padding_side="left")
62
  tokenizer.pad_token = tokenizer.eos_token
63
  tokenizer.padding_side = 'left'
64
 
@@ -69,9 +71,9 @@ tokenizer.padding_side = 'left'
69
  #peft_model = AutoModelForCausalLM.from_pretrained(base_model_id, config=model_config)
70
 
71
  # Load the PEFT model
72
- peft_config = PeftConfig.from_pretrained("Tonic/mistralmed", token="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")
73
- peft_model = MistralForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1", trust_remote_code=True)
74
- peft_model = PeftModel.from_pretrained(peft_model, "Tonic/mistralmed", token="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")
75
 
76
  class ChatBot:
77
  def __init__(self):
@@ -79,7 +81,7 @@ class ChatBot:
79
 
80
  def predict(self, user_input, system_prompt="You are an expert medical analyst:"):
81
  # Combine user input and system prompt
82
- formatted_input = f"<s>[INST]{system_prompt} {user_input}[/INST]"
83
 
84
  # Encode user input
85
  user_input_ids = tokenizer.encode(formatted_input, return_tensors="pt")
@@ -91,7 +93,7 @@ class ChatBot:
91
  chat_history_ids = user_input_ids
92
 
93
  # Generate a response using the PEFT model
94
- response = peft_model.generate(input_ids=chat_history_ids, max_length=512, pad_token_id=tokenizer.eos_token_id)
95
 
96
  # Update chat history
97
  self.history = chat_history_ids
@@ -102,8 +104,8 @@ class ChatBot:
102
 
103
  bot = ChatBot()
104
 
105
- title = "👋🏻Welcome to Tonic's MistralMed Chat🚀"
106
- description = "You can use this Space to test out the current model (MistralMed) or duplicate this Space and use it for any other model on 🤗HuggingFace. Join me on Discord to build together."
107
  examples = [["What is the proper treatment for buccal herpes?", "Please provide information on the most effective antiviral medications and home remedies for treating buccal herpes."]]
108
 
109
  iface = gr.Interface(
 
7
  from peft import PeftModel, PeftConfig
8
  import torch
9
  import gradio as gr
10
+ import os
11
+
12
+ hf_token = os.environ.get('HUGGINGFACE_TOKEN')
13
 
14
  # Functions to Wrap the Prompt Correctly
15
  def wrap_text(text, width=90):
 
17
  wrapped_lines = [textwrap.fill(line, width=width) for line in lines]
18
  wrapped_text = '\n'.join(wrapped_lines)
19
  return wrapped_text
 
20
  def multimodal_prompt(user_input, system_prompt="You are an expert medical analyst:"):
21
  """
22
  Generates text using a large language model, given a user input and a system prompt.
 
27
  A string containing the generated text.
28
  """
29
  # Combine user input and system prompt
30
+ formatted_input = f"[INSTRUCTION]{system_prompt} {user_input}"
31
 
32
  # Encode the input text
33
  encodeds = tokenizer(formatted_input, return_tensors="pt", add_special_tokens=False)
 
55
  device = "cuda" if torch.cuda.is_available() else "cpu"
56
 
57
  # Use the base model's ID
58
+ base_model_id = "stabilityai/stablelm-3b-4e1t"
59
+ model_directory = "Tonic/stablemed"
60
 
61
  # Instantiate the Tokenizer
62
+ tokenizer = AutoTokenizer.from_pretrained("stabilityai/stablelm-3b-4e1t", trust_remote_code=True, padding_side="left")
63
+ # tokenizer = AutoTokenizer.from_pretrained("Tonic/stablemed", trust_remote_code=True, padding_side="left")
64
  tokenizer.pad_token = tokenizer.eos_token
65
  tokenizer.padding_side = 'left'
66
 
 
71
  #peft_model = AutoModelForCausalLM.from_pretrained(base_model_id, config=model_config)
72
 
73
  # Load the PEFT model
74
+ peft_config = PeftConfig.from_pretrained("Tonic/stablemed", token=hf_token)
75
+ peft_model = MistralForCausalLM.from_pretrained("stabilityai/stablelm-3b-4e1t", trust_remote_code=True)
76
+ peft_model = PeftModel.from_pretrained(peft_model, "Tonic/stablemed", token=hf_token)
77
 
78
  class ChatBot:
79
  def __init__(self):
 
81
 
82
  def predict(self, user_input, system_prompt="You are an expert medical analyst:"):
83
  # Combine user input and system prompt
84
+ formatted_input = f"[INSTRUCTION:]{system_prompt}[QUESTION:] {user_input}"
85
 
86
  # Encode user input
87
  user_input_ids = tokenizer.encode(formatted_input, return_tensors="pt")
 
93
  chat_history_ids = user_input_ids
94
 
95
  # Generate a response using the PEFT model
96
+ response = peft_model.generate(input_ids=chat_history_ids, max_length=400, pad_token_id=tokenizer.eos_token_id)
97
 
98
  # Update chat history
99
  self.history = chat_history_ids
 
104
 
105
  bot = ChatBot()
106
 
107
+ title = "👋🏻Welcome to Tonic's StableMed Chat🚀"
108
+ description = "You can use this Space to test out the current model [StableMed](https://huggingface.co/Tonic/stablemed) or You can also use 😷StableMed⚕️ on your own data & in your own way by cloning this space. 🧬🔬🔍 Simply click here: <a style="display:inline-block" href="https://huggingface.co/spaces/Tonic/StableMed_Chat?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></h3> #### Join us : 🌟TeamTonic�� is always making cool demos! Join our active builder's🛠️community on 👻Discord: [Discord](https://discord.gg/GWpVpekp) On 🤗Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Polytonic](https://github.com/tonic-ai) & contribute to 🌟 [PolyGPT](https://github.com/tonic-ai/polygpt-alpha)" "
109
  examples = [["What is the proper treatment for buccal herpes?", "Please provide information on the most effective antiviral medications and home remedies for treating buccal herpes."]]
110
 
111
  iface = gr.Interface(