File size: 6,437 Bytes
8dbf509
7b924b8
 
 
 
 
 
 
 
 
 
 
8dbf509
 
e042085
 
2ca300b
af4feb8
2ca300b
 
eb88ab8
 
 
 
 
 
7b924b8
8dbf509
 
 
 
 
2ca300b
af4feb8
 
a1c598c
eb88ab8
 
7b924b8
 
eb88ab8
7b924b8
eb88ab8
af4feb8
e042085
 
eb88ab8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e042085
9ff190c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
# main.py
import spaces
import torch
import torch.nn.functional as F
from torch.nn import DataParallel
from torch import Tensor
from transformers import AutoTokenizer, AutoModel
import threading
import queue
import os
import json
import numpy as np
import gradio as gr
from huggingface_hub import InferenceClient
import openai
from openai import OpenAI
from globalvars import API_BASE, intention_prompt, tasks
from dotenv import load_dotenv
import re 
from utils import load_env_variables
import chromadb
from chromadb import Documents, EmbeddingFunction, Embeddings  
from chromadb.config import Settings  
from chromadb import HttpClient  
from langchain_community.document_loaders import UnstructuredFileLoader  
from utils import load_env_variables  , parse_and_route

os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:30'
os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
os.environ['CUDA_CACHE_DISABLE'] = '1'
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

### Utils

hf_token, yi_token = load_env_variables()

def clear_cuda_cache():
    torch.cuda.empty_cache()


## 01ai Yi-large Clience 

client = OpenAI(
    api_key=yi_token,
    base_url=API_BASE
)


## use instruct embeddings

# Load the tokenizer and model

class EmbeddingGenerator:  
    def __init__(self, model_name: str, token: str, intention_client):  
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")  
        self.tokenizer = AutoTokenizer.from_pretrained(model_name, token=token, trust_remote_code=True)  
        self.model = AutoModel.from_pretrained(model_name, token=token, trust_remote_code=True).to(self.device)  
        self.intention_client = intention_client  
  
    def clear_cuda_cache(self):  
        torch.cuda.empty_cache()  
  
    def compute_embeddings(self, input_text: str):  
        # Get the intention  
        intention_completion = self.intention_client.chat.completions.create(  
            model="yi-large",  
            messages=[  
                {"role": "system", "content": intention_prompt},  
                {"role": "user", "content": input_text}  
            ]  
        )  
        intention_output = intention_completion.choices[0].message['content']  
  
        # Parse and route the intention  
        parsed_task = parse_and_route(intention_output)  
        selected_task = list(parsed_task.keys())[0]  
  
        # Construct the prompt  
        try:  
            task_description = tasks[selected_task]  
        except KeyError:  
            print(f"Selected task not found: {selected_task}")  
            return f"Error: Task '{selected_task}' not found. Please select a valid task."  
          
        query_prefix = f"Instruct: {task_description}\nQuery: "  
        queries = [input_text]  
  
        # Get the embeddings  
        with torch.no_grad():  
            inputs = self.tokenizer(queries, return_tensors='pt', padding=True, truncation=True, max_length=4096).to(self.device)  
            outputs = self.model(**inputs)  
            query_embeddings = outputs.last_hidden_state.mean(dim=1)  
          
        # Normalize embeddings  
        query_embeddings = F.normalize(query_embeddings, p=2, dim=1)  
        embeddings_list = query_embeddings.detach().cpu().numpy().tolist()  
        self.clear_cuda_cache()  
        return embeddings_list  
  
  
class MyEmbeddingFunction(EmbeddingFunction):  
    def __init__(self, embedding_generator: EmbeddingGenerator):  
        self.embedding_generator = embedding_generator  
  
    def __call__(self, input: Documents) -> Embeddings:  
        embeddings = [self.embedding_generator.compute_embeddings(doc) for doc in input]  
        embeddings = [item for sublist in embeddings for item in sublist]  
        return embeddings  

## add chroma vector store
class DocumentLoader:  
    def __init__(self, file_path: str, mode: str = "elements"):  
        self.file_path = file_path  
        self.mode = mode  
  
    def load_documents(self):  
        loader = UnstructuredFileLoader(self.file_path, mode=self.mode)  
        docs = loader.load()  
        return [doc.page_content for doc in docs]  

class ChromaManager:  
    def __init__(self, collection_name: str, embedding_function: MyEmbeddingFunction):  
        self.client = HttpClient(settings=Settings(allow_reset=True))  
        self.client.reset()  # resets the database  
        self.collection = self.client.create_collection(collection_name)  
        self.embedding_function = embedding_function  
  
    def add_documents(self, documents: list):  
        for doc in documents:  
            self.collection.add(ids=[str(uuid.uuid1())], documents=[doc], embeddings=self.embedding_function([doc]))  
  
    def query(self, query_text: str):  
        db = Chroma(client=self.client, collection_name=self.collection.name, embedding_function=self.embedding_function)  
        result_docs = db.similarity_search(query_text)  
        return result_docs  
  


# print(completion)

def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
):
    messages = [{"role": "system", "content": system_message}]

    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})

    messages.append({"role": "user", "content": message})

    response = ""

    for message in client.chat_completion(
        messages,
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p,
    ):
        token = message.choices[0].delta.content

        response += token
        yield response

"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
        gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p (nucleus sampling)",
        ),
    ],
)


if __name__ == "__main__":
    demo.launch()