Spaces:
Build error
Build error
# main.py | |
import spaces | |
import torch | |
import torch.nn.functional as F | |
from torch.nn import DataParallel | |
from torch import Tensor | |
from transformers import AutoTokenizer, AutoModel | |
import threading | |
import queue | |
import os | |
import json | |
import numpy as np | |
import gradio as gr | |
from huggingface_hub import InferenceClient | |
import openai | |
from openai import OpenAI | |
from globalvars import API_BASE, API_KEY, intention_prompt | |
from dotenv import load_dotenv | |
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:30' | |
os.environ['CUDA_LAUNCH_BLOCKING'] = '1' | |
os.environ['CUDA_CACHE_DISABLE'] = '1' | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
def load_env_variables(): | |
# Load the .env file | |
load_dotenv() | |
# Retrieve the environment variables | |
hf_token = os.getenv('HF_TOKEN') | |
yi_token = os.getenv('YI_TOKEN') | |
return hf_token, yi_token | |
# Example usage | |
hf_token, yi_token = load_env_variables() | |
## add chroma vector store | |
## use instruct embeddings | |
# Load the tokenizer and model | |
tokenizer = AutoTokenizer.from_pretrained('nvidia/NV-Embed-v1', token = hf_token , trust_remote_code=True) | |
model = AutoModel.from_pretrained('nvidia/NV-Embed-v1' , token = hf_token , trust_remote_code=True).to(device) | |
## Make intention Mapper | |
intention_client = OpenAI( | |
api_key=yi_token, | |
base_url=API_BASE | |
) | |
intention_completion = intention_client.chat.completions.create( | |
model="yi-large", | |
messages=[{"role": "system", "content": intention_prompt},{"role": "user", "content": inputext}] | |
) | |
# print(completion) | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
messages = [{"role": "system", "content": system_message}] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
messages.append({"role": "user", "content": message}) | |
response = "" | |
for message in client.chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
): | |
token = message.choices[0].delta.content | |
response += token | |
yield response | |
""" | |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
""" | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() |