Spaces:
Build error
Build error
remove duplicate code
Browse files
app.py
CHANGED
@@ -1,103 +1,3 @@
|
|
1 |
-
# main.py
|
2 |
-
import spaces
|
3 |
-
import torch
|
4 |
-
import torch.nn.functional as F
|
5 |
-
from torch.nn import DataParallel
|
6 |
-
from torch import Tensor
|
7 |
-
from transformers import AutoTokenizer, AutoModel
|
8 |
-
import threading
|
9 |
-
import queue
|
10 |
-
import os
|
11 |
-
import json
|
12 |
-
import numpy as np
|
13 |
-
import gradio as gr
|
14 |
-
from huggingface_hub import InferenceClient
|
15 |
-
import openai
|
16 |
-
from openai import OpenAI
|
17 |
-
from globalvars import API_BASE, intention_prompt, tasks , system_message, model_name
|
18 |
-
from dotenv import load_dotenv
|
19 |
-
import re
|
20 |
-
from utils import load_env_variables
|
21 |
-
import chromadb
|
22 |
-
from chromadb import Documents, EmbeddingFunction, Embeddings
|
23 |
-
from chromadb.config import Settings
|
24 |
-
from chromadb import HttpClient
|
25 |
-
from langchain_community.document_loaders import UnstructuredFileLoader
|
26 |
-
from utils import load_env_variables , parse_and_route
|
27 |
-
|
28 |
-
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:30'
|
29 |
-
os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
|
30 |
-
os.environ['CUDA_CACHE_DISABLE'] = '1'
|
31 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
32 |
-
|
33 |
-
hf_token, yi_token = load_env_variables()
|
34 |
-
|
35 |
-
def clear_cuda_cache():
|
36 |
-
torch.cuda.empty_cache()
|
37 |
-
|
38 |
-
client = OpenAI(
|
39 |
-
api_key=yi_token,
|
40 |
-
base_url=API_BASE
|
41 |
-
)
|
42 |
-
|
43 |
-
|
44 |
-
class EmbeddingGenerator:
|
45 |
-
def __init__(self, model_name: str, token: str, intention_client):
|
46 |
-
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
47 |
-
self.tokenizer = AutoTokenizer.from_pretrained(model_name, token=token, trust_remote_code=True)
|
48 |
-
self.model = AutoModel.from_pretrained(model_name, token=token, trust_remote_code=True).to(self.device)
|
49 |
-
self.intention_client = intention_client
|
50 |
-
|
51 |
-
def clear_cuda_cache(self):
|
52 |
-
torch.cuda.empty_cache()
|
53 |
-
|
54 |
-
@spaces.GPU
|
55 |
-
def compute_embeddings(self, input_text: str):
|
56 |
-
# Get the intention
|
57 |
-
intention_completion = self.intention_client.chat.completions.create(
|
58 |
-
model="yi-large",
|
59 |
-
messages=[
|
60 |
-
{"role": "system", "content": intention_prompt},
|
61 |
-
{"role": "user", "content": input_text}
|
62 |
-
]
|
63 |
-
)
|
64 |
-
intention_output = intention_completion.choices[0].message['content']
|
65 |
-
|
66 |
-
# Parse and route the intention
|
67 |
-
parsed_task = parse_and_route(intention_output)
|
68 |
-
selected_task = list(parsed_task.keys())[0]
|
69 |
-
|
70 |
-
# Construct the prompt
|
71 |
-
try:
|
72 |
-
task_description = tasks[selected_task]
|
73 |
-
except KeyError:
|
74 |
-
print(f"Selected task not found: {selected_task}")
|
75 |
-
return f"Error: Task '{selected_task}' not found. Please select a valid task."
|
76 |
-
|
77 |
-
query_prefix = f"Instruct: {task_description}\nQuery: "
|
78 |
-
queries = [input_text]
|
79 |
-
|
80 |
-
# Get the embeddings
|
81 |
-
with torch.no_grad():
|
82 |
-
inputs = self.tokenizer(queries, return_tensors='pt', padding=True, truncation=True, max_length=4096).to(self.device)
|
83 |
-
outputs = self.model(**inputs)
|
84 |
-
query_embeddings = outputs.last_hidden_state.mean(dim=1)
|
85 |
-
|
86 |
-
# Normalize embeddings
|
87 |
-
query_embeddings = F.normalize(query_embeddings, p=2, dim=1)
|
88 |
-
embeddings_list = query_embeddings.detach().cpu().numpy().tolist()
|
89 |
-
self.clear_cuda_cache()
|
90 |
-
return embeddings_list
|
91 |
-
|
92 |
-
|
93 |
-
class MyEmbeddingFunction(EmbeddingFunction):
|
94 |
-
def __init__(self, embedding_generator: EmbeddingGenerator):
|
95 |
-
self.embedding_generator = embedding_generator
|
96 |
-
|
97 |
-
def __call__(self, input: Documents) -> Embeddings:
|
98 |
-
embeddings = [self.embedding_generator.compute_embeddings(doc) for doc in input]
|
99 |
-
embeddings = [item for sublist in embeddings for item in sublist]
|
100 |
-
return embeddings
|
101 |
# main.py
|
102 |
import os
|
103 |
import uuid
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
# main.py
|
2 |
import os
|
3 |
import uuid
|