Spaces:
Build error
Build error
add jina embeddings and reranker
Browse files- README.md +5 -5
- app.py +0 -235
- globalvars.py +25 -54
- langchainapp.py +0 -243
- yijinaembed.py +231 -0
README.md
CHANGED
@@ -1,11 +1,11 @@
|
|
1 |
---
|
2 |
title: 01aiYi NvidiaEmbed
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
sdk_version: 4.36.1
|
8 |
-
app_file:
|
9 |
-
pinned:
|
10 |
license: mit
|
11 |
---
|
|
|
1 |
---
|
2 |
title: 01aiYi NvidiaEmbed
|
3 |
+
emoji: ☯️🧠🛌🏻🥟🧩
|
4 |
+
colorFrom: blue
|
5 |
+
colorTo: red
|
6 |
sdk: gradio
|
7 |
sdk_version: 4.36.1
|
8 |
+
app_file: yijinaembed.py
|
9 |
+
pinned: true
|
10 |
license: mit
|
11 |
---
|
app.py
DELETED
@@ -1,235 +0,0 @@
|
|
1 |
-
# app.py
|
2 |
-
import spaces
|
3 |
-
from torch.nn import DataParallel
|
4 |
-
from torch import Tensor
|
5 |
-
from transformers import AutoTokenizer, AutoModel
|
6 |
-
from huggingface_hub import InferenceClient
|
7 |
-
from openai import OpenAI
|
8 |
-
from langchain_community.document_loaders import UnstructuredFileLoader
|
9 |
-
from langchain_chroma import Chroma
|
10 |
-
from chromadb import Documents, EmbeddingFunction, Embeddings
|
11 |
-
from chromadb.config import Settings
|
12 |
-
import chromadb #import HttpClient
|
13 |
-
import os
|
14 |
-
import tempfile
|
15 |
-
import re
|
16 |
-
import uuid
|
17 |
-
import gradio as gr
|
18 |
-
import torch
|
19 |
-
import torch.nn.functional as F
|
20 |
-
from dotenv import load_dotenv
|
21 |
-
from utils import load_env_variables, parse_and_route, escape_special_characters
|
22 |
-
from globalvars import API_BASE, intention_prompt, tasks, system_message, model_name, metadata_prompt
|
23 |
-
from sentence_transformers import SentenceTransformer
|
24 |
-
|
25 |
-
|
26 |
-
load_dotenv()
|
27 |
-
|
28 |
-
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:30'
|
29 |
-
os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
|
30 |
-
os.environ['CUDA_CACHE_DISABLE'] = '1'
|
31 |
-
|
32 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
33 |
-
|
34 |
-
# Ensure the temporary directory exists
|
35 |
-
temp_dir = '/tmp/gradio/'
|
36 |
-
os.makedirs(temp_dir, exist_ok=True)
|
37 |
-
|
38 |
-
# Set Gradio cache directory
|
39 |
-
gr.components.file.GRADIO_CACHE = temp_dir
|
40 |
-
|
41 |
-
### Utils
|
42 |
-
hf_token, yi_token = load_env_variables()
|
43 |
-
|
44 |
-
def clear_cuda_cache():
|
45 |
-
torch.cuda.empty_cache()
|
46 |
-
|
47 |
-
client = OpenAI(api_key=yi_token, base_url=API_BASE)
|
48 |
-
|
49 |
-
chroma_client = chromadb.Client(Settings())
|
50 |
-
|
51 |
-
# Create a collection
|
52 |
-
chroma_collection = chroma_client.create_collection("all-my-documents")
|
53 |
-
|
54 |
-
class EmbeddingGenerator:
|
55 |
-
def __init__(self, model_name: str, token: str, intention_client):
|
56 |
-
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
57 |
-
self.tokenizer = AutoTokenizer.from_pretrained(model_name, token=token, trust_remote_code=True)
|
58 |
-
self.model = AutoModel.from_pretrained(model_name, token=token, trust_remote_code=True).to(self.device)
|
59 |
-
self.intention_client = intention_client
|
60 |
-
|
61 |
-
def clear_cuda_cache(self):
|
62 |
-
torch.cuda.empty_cache()
|
63 |
-
|
64 |
-
@spaces.GPU
|
65 |
-
def compute_embeddings(self, input_text: str):
|
66 |
-
escaped_input_text = escape_special_characters(input_text)
|
67 |
-
intention_completion = self.intention_client.chat.completions.create(
|
68 |
-
model="yi-large",
|
69 |
-
messages=[
|
70 |
-
{"role": "system", "content": escape_special_characters(intention_prompt)},
|
71 |
-
{"role": "user", "content": escaped_input_text}
|
72 |
-
]
|
73 |
-
)
|
74 |
-
intention_output = intention_completion.choices[0].message.content
|
75 |
-
# Parse and route the intention
|
76 |
-
parsed_task = parse_and_route(intention_output)
|
77 |
-
selected_task = parsed_task
|
78 |
-
# Construct the prompt
|
79 |
-
if selected_task in tasks:
|
80 |
-
task_description = tasks[selected_task]
|
81 |
-
else:
|
82 |
-
task_description = tasks["DEFAULT"]
|
83 |
-
print(f"Selected task not found: {selected_task}")
|
84 |
-
|
85 |
-
query_prefix = f"Instruct: {task_description}\nQuery: "
|
86 |
-
queries = [escaped_input_text]
|
87 |
-
|
88 |
-
# Get the metadata
|
89 |
-
metadata_completion = self.intention_client.chat.completions.create(
|
90 |
-
model="yi-large",
|
91 |
-
messages=[
|
92 |
-
{"role": "system", "content": escape_special_characters(metadata_prompt)},
|
93 |
-
{"role": "user", "content": escaped_input_text}
|
94 |
-
]
|
95 |
-
)
|
96 |
-
metadata_output = metadata_completion.choices[0].message.content
|
97 |
-
metadata = self.extract_metadata(metadata_output)
|
98 |
-
|
99 |
-
# Get the embeddings
|
100 |
-
with torch.no_grad():
|
101 |
-
inputs = self.tokenizer(queries, return_tensors='pt', padding=True, truncation=True, max_length=4096).to(self.device)
|
102 |
-
outputs = self.model(**inputs)
|
103 |
-
query_embeddings = outputs["sentence_embeddings"].mean(dim=1)
|
104 |
-
query_embeddings = outputs.last_hidden_state.mean(dim=1)
|
105 |
-
|
106 |
-
# Normalize embeddings
|
107 |
-
query_embeddings = F.normalize(query_embeddings, p=2, dim=1)
|
108 |
-
embeddings_list = query_embeddings.detach().cpu().numpy().tolist()
|
109 |
-
|
110 |
-
self.clear_cuda_cache()
|
111 |
-
return embeddings_list, metadata
|
112 |
-
|
113 |
-
def extract_metadata(self, metadata_output: str):
|
114 |
-
# Regex pattern to extract key-value pairs
|
115 |
-
pattern = re.compile(r'\"(\w+)\": \"([^\"]+)\"')
|
116 |
-
matches = pattern.findall(metadata_output)
|
117 |
-
metadata = {key: value for key, value in matches}
|
118 |
-
return metadata
|
119 |
-
|
120 |
-
class MyEmbeddingFunction(EmbeddingFunction):
|
121 |
-
def __init__(self, model_name: str, token: str, intention_client):
|
122 |
-
self.model_name = model_name
|
123 |
-
self.token = token
|
124 |
-
self.intention_client = intention_client
|
125 |
-
|
126 |
-
def create_embedding_generator(self):
|
127 |
-
return EmbeddingGenerator(self.model_name, self.token, self.intention_client)
|
128 |
-
|
129 |
-
def __call__(self, input: Documents) -> (Embeddings, list):
|
130 |
-
embedding_generator = self.create_embedding_generator()
|
131 |
-
embeddings_with_metadata = [embedding_generator.compute_embeddings(doc.page_content) for doc in input]
|
132 |
-
embeddings = [item[0] for item in embeddings_with_metadata]
|
133 |
-
metadata = [item[1] for item in embeddings_with_metadata]
|
134 |
-
embeddings_flattened = [emb for sublist in embeddings for emb in sublist]
|
135 |
-
metadata_flattened = [meta for sublist in metadata for meta in sublist]
|
136 |
-
return embeddings_flattened, metadata_flattened
|
137 |
-
|
138 |
-
def load_documents(file_path: str, mode: str = "elements"):
|
139 |
-
loader = UnstructuredFileLoader(file_path, mode=mode)
|
140 |
-
docs = loader.load()
|
141 |
-
return [doc.page_content for doc in docs]
|
142 |
-
|
143 |
-
def initialize_chroma(collection_name: str, embedding_function: MyEmbeddingFunction):
|
144 |
-
db = Chroma(client=chroma_client, collection_name=collection_name, embedding_function=embedding_function)
|
145 |
-
return db
|
146 |
-
|
147 |
-
def add_documents_to_chroma(documents: list, embedding_function: MyEmbeddingFunction):
|
148 |
-
for doc in documents:
|
149 |
-
embeddings, metadata = embedding_function.create_embedding_generator().compute_embeddings(doc)
|
150 |
-
for embedding, meta in zip(embeddings, metadata):
|
151 |
-
chroma_collection.add(
|
152 |
-
ids=[str(uuid.uuid1())],
|
153 |
-
documents=[doc],
|
154 |
-
embeddings=[embedding],
|
155 |
-
metadatas=[meta]
|
156 |
-
)
|
157 |
-
|
158 |
-
def query_chroma(query_text: str, embedding_function: MyEmbeddingFunction):
|
159 |
-
query_embeddings, query_metadata = embedding_function.create_embedding_generator().compute_embeddings(query_text)
|
160 |
-
result_docs = chroma_collection.query(
|
161 |
-
query_texts=[query_text],
|
162 |
-
n_results=2
|
163 |
-
)
|
164 |
-
return result_docs
|
165 |
-
|
166 |
-
# Initialize clients
|
167 |
-
intention_client = OpenAI(api_key=yi_token, base_url=API_BASE)
|
168 |
-
embedding_generator = EmbeddingGenerator(model_name=model_name, token=hf_token, intention_client=intention_client)
|
169 |
-
embedding_function = MyEmbeddingFunction(model_name=model_name, token=hf_token, intention_client=intention_client)
|
170 |
-
chroma_db = initialize_chroma(collection_name="Tonic-instruct", embedding_function=embedding_function)
|
171 |
-
|
172 |
-
def respond(
|
173 |
-
message,
|
174 |
-
history: list[tuple[str, str]],
|
175 |
-
system_message,
|
176 |
-
max_tokens,
|
177 |
-
temperature,
|
178 |
-
top_p,
|
179 |
-
):
|
180 |
-
retrieved_text = query_documents(message)
|
181 |
-
messages = [{"role": "system", "content": escape_special_characters(system_message)}]
|
182 |
-
for val in history:
|
183 |
-
if val[0]:
|
184 |
-
messages.append({"role": "user", "content": val[0]})
|
185 |
-
if val[1]:
|
186 |
-
messages.append({"role": "assistant", "content": val[1]})
|
187 |
-
messages.append({"role": "user", "content": f"{retrieved_text}\n\n{escape_special_characters(message)}"})
|
188 |
-
response = ""
|
189 |
-
for message in intention_client.chat_completion(
|
190 |
-
messages,
|
191 |
-
max_tokens=max_tokens,
|
192 |
-
stream=True,
|
193 |
-
temperature=temperature,
|
194 |
-
top_p=top_p,
|
195 |
-
):
|
196 |
-
token = message.choices[0].delta.content
|
197 |
-
response += token
|
198 |
-
yield response
|
199 |
-
|
200 |
-
def upload_documents(files):
|
201 |
-
for file in files:
|
202 |
-
loader = UnstructuredFileLoader(file.name)
|
203 |
-
documents = loader.load()
|
204 |
-
add_documents_to_chroma(documents, embedding_function)
|
205 |
-
return "Documents uploaded and processed successfully!"
|
206 |
-
|
207 |
-
def query_documents(query):
|
208 |
-
results = query_chroma(query, embedding_function)
|
209 |
-
return "\n\n".join([result.content for result in results])
|
210 |
-
|
211 |
-
with gr.Blocks() as demo:
|
212 |
-
with gr.Tab("Upload Documents"):
|
213 |
-
document_upload = gr.File(file_count="multiple", file_types=["document"])
|
214 |
-
upload_button = gr.Button("Upload and Process")
|
215 |
-
upload_button.click(upload_documents, inputs=document_upload, outputs=gr.Text())
|
216 |
-
|
217 |
-
with gr.Tab("Ask Questions"):
|
218 |
-
with gr.Row():
|
219 |
-
chat_interface = gr.ChatInterface(
|
220 |
-
respond,
|
221 |
-
additional_inputs=[
|
222 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
223 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
224 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
225 |
-
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
|
226 |
-
],
|
227 |
-
)
|
228 |
-
query_input = gr.Textbox(label="Query")
|
229 |
-
query_button = gr.Button("Query")
|
230 |
-
query_output = gr.Textbox()
|
231 |
-
query_button.click(query_documents, inputs=query_input, outputs=query_output)
|
232 |
-
|
233 |
-
if __name__ == "__main__":
|
234 |
-
# os.system("chroma run --host localhost --port 8000 &")
|
235 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
globalvars.py
CHANGED
@@ -3,7 +3,7 @@
|
|
3 |
API_BASE = "https://api.01.ai/v1"
|
4 |
API_KEY = "your key"
|
5 |
|
6 |
-
model_name =
|
7 |
|
8 |
title = """
|
9 |
# 👋🏻Welcome to 🙋🏻♂️Tonic's 📽️Nvidia 🛌🏻Embed V-1 !"""
|
@@ -15,76 +15,47 @@ Join us : 🌟TeamTonic🌟 is always making cool demos! Join our active builder
|
|
15 |
"""
|
16 |
|
17 |
tasks = {
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
'NFCorpus': 'Given a question, retrieve relevant documents that best answer the question',
|
25 |
-
'NQ': 'Given a question, retrieve Wikipedia passages that answer the question',
|
26 |
-
'QuoraRetrieval': 'Given a question, retrieve questions that are semantically equivalent to the given question',
|
27 |
-
'SCIDOCS': 'Given a scientific paper title, retrieve paper abstracts that are cited by the given paper',
|
28 |
-
'DEFAULT': 'Given a query, retrieve relevant entity descriptions from DBPedia',
|
29 |
}
|
30 |
|
31 |
-
intention_prompt= """
|
|
|
32 |
"type": "object",
|
33 |
"properties": {
|
34 |
-
"
|
35 |
"type": "boolean",
|
36 |
-
"description"
|
37 |
},
|
38 |
-
"
|
39 |
"type": "boolean",
|
40 |
-
"description"
|
41 |
},
|
42 |
-
"
|
43 |
"type": "boolean",
|
44 |
-
"description": "
|
45 |
},
|
46 |
-
"
|
47 |
"type": "boolean",
|
48 |
-
"description"
|
49 |
},
|
50 |
-
"
|
51 |
"type": "boolean",
|
52 |
-
"description"
|
53 |
-
},
|
54 |
-
"MSMARCO": {
|
55 |
-
"type": "boolean",
|
56 |
-
"description": "Given a web search query, retrieve relevant passages that answer the query"
|
57 |
-
},
|
58 |
-
"NFCorpus": {
|
59 |
-
"type": "boolean",
|
60 |
-
"description" : "Given a question, retrieve relevant documents that best answer the question"
|
61 |
-
},
|
62 |
-
"NQ": {
|
63 |
-
"type": "boolean",
|
64 |
-
"description" : "Given a question, retrieve Wikipedia passages that answer the question"
|
65 |
-
},
|
66 |
-
"QuoraRetrieval": {
|
67 |
-
"type": "boolean",
|
68 |
-
"description": "Given a question, retrieve questions that are semantically equivalent to the given question"
|
69 |
-
},
|
70 |
-
"SCIDOCS": {
|
71 |
-
"type": "boolean",
|
72 |
-
"description": "Given a scientific paper title, retrieve paper abstracts that are cited by the given paper"
|
73 |
}
|
74 |
},
|
75 |
"required": [
|
76 |
-
"
|
77 |
-
"
|
78 |
-
"
|
79 |
-
"
|
80 |
-
"
|
81 |
-
"MSMARCO",
|
82 |
-
"NFCorpus",
|
83 |
-
"NQ",
|
84 |
-
"QuoraRetrieval",
|
85 |
-
"SCIDOCS",
|
86 |
]
|
87 |
-
|
88 |
|
89 |
you will recieve a text , classify the text according to the schema above. ONLY PROVIDE THE FINAL JSON , DO NOT PRODUCE ANY ADDITION INSTRUCTION :"""
|
90 |
|
|
|
3 |
API_BASE = "https://api.01.ai/v1"
|
4 |
API_KEY = "your key"
|
5 |
|
6 |
+
model_name = "jinaai/jina-embeddings-v3"
|
7 |
|
8 |
title = """
|
9 |
# 👋🏻Welcome to 🙋🏻♂️Tonic's 📽️Nvidia 🛌🏻Embed V-1 !"""
|
|
|
15 |
"""
|
16 |
|
17 |
tasks = {
|
18 |
+
'retrieval.query': 'Used for query embeddings in asymmetric retrieval tasks',
|
19 |
+
'retrieval.passage': 'Used for passage embeddings in asymmetric retrieval tasks',
|
20 |
+
'separation': 'Used for embeddings in clustering and re-ranking applications',
|
21 |
+
'classification': 'Used for embeddings in classification tasks',
|
22 |
+
'text-matching': 'Used for embeddings in tasks that quantify similarity between two texts, such as STS or symmetric retrieval tasks',
|
23 |
+
'DEFAULT': 'Used for general-purpose embeddings when no specific task is specified'
|
|
|
|
|
|
|
|
|
|
|
24 |
}
|
25 |
|
26 |
+
intention_prompt = """
|
27 |
+
{
|
28 |
"type": "object",
|
29 |
"properties": {
|
30 |
+
"retrieval.query": {
|
31 |
"type": "boolean",
|
32 |
+
"description": "Select this for query embeddings in asymmetric retrieval tasks"
|
33 |
},
|
34 |
+
"retrieval.passage": {
|
35 |
"type": "boolean",
|
36 |
+
"description": "Select this for passage embeddings in asymmetric retrieval tasks"
|
37 |
},
|
38 |
+
"separation": {
|
39 |
"type": "boolean",
|
40 |
+
"description": "Select this for embeddings in clustering and re-ranking applications"
|
41 |
},
|
42 |
+
"classification": {
|
43 |
"type": "boolean",
|
44 |
+
"description": "Select this for embeddings in classification tasks"
|
45 |
},
|
46 |
+
"text-matching": {
|
47 |
"type": "boolean",
|
48 |
+
"description": "Select this for embeddings in tasks that quantify similarity between two texts, such as STS or symmetric retrieval tasks"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
}
|
50 |
},
|
51 |
"required": [
|
52 |
+
"retrieval.query",
|
53 |
+
"retrieval.passage",
|
54 |
+
"separation",
|
55 |
+
"classification",
|
56 |
+
"text-matching"
|
|
|
|
|
|
|
|
|
|
|
57 |
]
|
58 |
+
}
|
59 |
|
60 |
you will recieve a text , classify the text according to the schema above. ONLY PROVIDE THE FINAL JSON , DO NOT PRODUCE ANY ADDITION INSTRUCTION :"""
|
61 |
|
langchainapp.py
DELETED
@@ -1,243 +0,0 @@
|
|
1 |
-
# app.py
|
2 |
-
import spaces
|
3 |
-
from torch.nn import DataParallel
|
4 |
-
from torch import Tensor
|
5 |
-
from transformers import AutoTokenizer, AutoModel
|
6 |
-
from huggingface_hub import InferenceClient
|
7 |
-
from openai import OpenAI
|
8 |
-
from langchain_community.embeddings import HuggingFaceInstructEmbeddings
|
9 |
-
from langchain_community.document_loaders import UnstructuredFileLoader
|
10 |
-
from langchain_chroma import Chroma
|
11 |
-
from chromadb import Documents, EmbeddingFunction, Embeddings
|
12 |
-
from chromadb.config import Settings
|
13 |
-
import chromadb #import HttpClient
|
14 |
-
from typing import List, Tuple, Dict, Any
|
15 |
-
import os
|
16 |
-
import re
|
17 |
-
import uuid
|
18 |
-
import gradio as gr
|
19 |
-
import torch
|
20 |
-
import torch.nn.functional as F
|
21 |
-
from dotenv import load_dotenv
|
22 |
-
from utils import load_env_variables, parse_and_route , escape_special_characters
|
23 |
-
from globalvars import API_BASE, intention_prompt, tasks, system_message, model_name , metadata_prompt
|
24 |
-
# import time
|
25 |
-
# import httpx
|
26 |
-
|
27 |
-
from langchain_community.chat_models import ChatOpenAI
|
28 |
-
from langchain.retrievers.document_compressors import LLMChainExtractor
|
29 |
-
from langchain.retrievers.multi_query import MultiQueryRetriever
|
30 |
-
from langchain.retrievers import ContextualCompressionRetriever
|
31 |
-
from langchain.prompts.chat import ChatPromptTemplate, HumanMessagePromptTemplate
|
32 |
-
# from langchain.vectorstores import Chroma
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
load_dotenv()
|
37 |
-
|
38 |
-
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:50'
|
39 |
-
os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
|
40 |
-
os.environ['CUDA_CACHE_DISABLE'] = '1'
|
41 |
-
|
42 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
43 |
-
### Utils
|
44 |
-
hf_token, yi_token = load_env_variables()
|
45 |
-
|
46 |
-
# tokenizer = AutoTokenizer.from_pretrained(model_name, token=hf_token, trust_remote_code=True)
|
47 |
-
# Lazy load model
|
48 |
-
model = None
|
49 |
-
|
50 |
-
@spaces.GPU
|
51 |
-
def load_model():
|
52 |
-
global model
|
53 |
-
if model is None:
|
54 |
-
from transformers import AutoModel
|
55 |
-
model = AutoModel.from_pretrained(model_name, token=hf_token, trust_remote_code=True).to(device)
|
56 |
-
return model
|
57 |
-
|
58 |
-
# Load model
|
59 |
-
nvidiamodel = load_model()
|
60 |
-
# nvidiamodel.set_pooling_include_prompt(include_prompt=False)
|
61 |
-
|
62 |
-
def clear_cuda_cache():
|
63 |
-
torch.cuda.empty_cache()
|
64 |
-
|
65 |
-
client = OpenAI(api_key=yi_token, base_url=API_BASE)
|
66 |
-
|
67 |
-
chroma_client = chromadb.Client(Settings())
|
68 |
-
|
69 |
-
# Create a collection
|
70 |
-
chroma_collection = chroma_client.create_collection("all-my-documents")
|
71 |
-
|
72 |
-
@spaces.GPU
|
73 |
-
class MyEmbeddingFunction(EmbeddingFunction):
|
74 |
-
def __init__(self, model_name: str, token: str, intention_client):
|
75 |
-
self.model_name = model_name
|
76 |
-
self.token = token
|
77 |
-
self.intention_client = intention_client
|
78 |
-
self.hf_embeddings = HuggingFaceInstructEmbeddings(
|
79 |
-
model_name=model_name,
|
80 |
-
model_kwargs={'device': 'cuda' if torch.cuda.is_available() else 'cpu'},
|
81 |
-
encode_kwargs={'normalize_embeddings': True}
|
82 |
-
)
|
83 |
-
|
84 |
-
def create_embedding_generator(self):
|
85 |
-
return self.hf_embeddings
|
86 |
-
|
87 |
-
def __call__(self, input: Documents) -> (List[List[float]], List[Dict[str, Any]]):
|
88 |
-
embeddings_with_metadata = [self.compute_embeddings(doc.page_content) for doc in input]
|
89 |
-
embeddings = [item[0] for item in embeddings_with_metadata]
|
90 |
-
metadata = [item[1] for item in embeddings_with_metadata]
|
91 |
-
embeddings_flattened = [emb for sublist in embeddings for emb in sublist]
|
92 |
-
metadata_flattened = [meta for sublist in metadata for meta in sublist]
|
93 |
-
return embeddings_flattened, metadata_flattened
|
94 |
-
|
95 |
-
@spaces.GPU
|
96 |
-
def compute_embeddings(self, input_text: str):
|
97 |
-
escaped_input_text = escape_special_characters(input_text)
|
98 |
-
|
99 |
-
# Get the intention
|
100 |
-
intention_completion = self.intention_client.chat.completions.create(
|
101 |
-
model="yi-large",
|
102 |
-
messages=[
|
103 |
-
{"role": "system", "content": escape_special_characters(intention_prompt)},
|
104 |
-
{"role": "user", "content": escaped_input_text}
|
105 |
-
]
|
106 |
-
)
|
107 |
-
intention_output = intention_completion.choices[0].message.content
|
108 |
-
parsed_task = parse_and_route(intention_output)
|
109 |
-
selected_task = parsed_task if parsed_task in tasks else "DEFAULT"
|
110 |
-
task_description = tasks[selected_task]
|
111 |
-
# query_prefix = "Instruct: " +tasks[selected_task] +"\nQuery: "
|
112 |
-
# Construct the embed_instruction and query_instruction dynamically
|
113 |
-
embed_instruction = f"Instruct: {task_description}" +"\nQuery:"
|
114 |
-
# query_instruction = f""
|
115 |
-
|
116 |
-
# Update the hf_embeddings object with the new instructions
|
117 |
-
self.hf_embeddings.embed_instruction = embed_instruction
|
118 |
-
# self.hf_embeddings.query_instruction = query_instruction
|
119 |
-
|
120 |
-
# Get the metadata
|
121 |
-
metadata_completion = self.intention_client.chat.completions.create(
|
122 |
-
model="yi-large",
|
123 |
-
messages=[
|
124 |
-
{"role": "system", "content": escape_special_characters(metadata_prompt)},
|
125 |
-
{"role": "user", "content": escaped_input_text}
|
126 |
-
]
|
127 |
-
)
|
128 |
-
metadata_output = metadata_completion.choices[0].message.content
|
129 |
-
metadata = self.extract_metadata(metadata_output)
|
130 |
-
|
131 |
-
# Get the embeddings
|
132 |
-
embeddings = self.hf_embeddings.embed_documents([escaped_input_text])
|
133 |
-
return embeddings[0], metadata
|
134 |
-
|
135 |
-
def extract_metadata(self, metadata_output: str) -> Dict[str, str]:
|
136 |
-
pattern = re.compile(r'\"(\w+)\": \"([^\"]+)\"')
|
137 |
-
matches = pattern.findall(metadata_output)
|
138 |
-
metadata = {key: value for key, value in matches}
|
139 |
-
return metadata
|
140 |
-
|
141 |
-
def load_documents(file_path: str, mode: str = "elements"):
|
142 |
-
loader = UnstructuredFileLoader(file_path, mode=mode)
|
143 |
-
docs = loader.load()
|
144 |
-
return [doc.page_content for doc in docs]
|
145 |
-
|
146 |
-
def initialize_chroma(collection_name: str, embedding_function: MyEmbeddingFunction):
|
147 |
-
db = Chroma(client=chroma_client, collection_name=collection_name, embedding_function=embedding_function)
|
148 |
-
return db
|
149 |
-
|
150 |
-
def add_documents_to_chroma(documents: list, embedding_function: MyEmbeddingFunction):
|
151 |
-
for doc in documents:
|
152 |
-
embeddings, metadata = embedding_function.compute_embeddings(doc)
|
153 |
-
for embedding, meta in zip(embeddings, metadata):
|
154 |
-
chroma_collection.add(
|
155 |
-
ids=[str(uuid.uuid1())],
|
156 |
-
documents=[doc],
|
157 |
-
embeddings=[embedding],
|
158 |
-
metadatas=[meta]
|
159 |
-
)
|
160 |
-
|
161 |
-
def query_chroma(query_text: str, embedding_function: MyEmbeddingFunction):
|
162 |
-
model = load_model()
|
163 |
-
query_embeddings, query_metadata = embedding_function.compute_embeddings(query_text)
|
164 |
-
result_docs = chroma_collection.query(
|
165 |
-
query_texts=[query_text],
|
166 |
-
n_results=3
|
167 |
-
)
|
168 |
-
return result_docs
|
169 |
-
|
170 |
-
|
171 |
-
def answer_query(message: str, chat_history: List[Tuple[str, str]]):
|
172 |
-
base_compressor = LLMChainExtractor.from_llm(intention_client)
|
173 |
-
db = Chroma(persist_directory="output/general_knowledge", embedding_function=embedding_function)
|
174 |
-
base_retriever = db.as_retriever()
|
175 |
-
mq_retriever = MultiQueryRetriever.from_llm(retriever=base_retriever, llm=intention_client)
|
176 |
-
compression_retriever = ContextualCompressionRetriever(base_compressor=base_compressor, base_retriever=mq_retriever)
|
177 |
-
|
178 |
-
matched_docs = compression_retriever.get_relevant_documents(query=message)
|
179 |
-
context = ""
|
180 |
-
for doc in matched_docs:
|
181 |
-
page_content = doc.page_content
|
182 |
-
context += page_content
|
183 |
-
context += "\n\n"
|
184 |
-
|
185 |
-
template = """
|
186 |
-
Answer the following question only by using the context given below in the triple backticks, do not use any other information to answer the question.
|
187 |
-
If you can't answer the given question with the given context, you can return an empty string ('')
|
188 |
-
Context: ```{context}```
|
189 |
-
----------------------------
|
190 |
-
Question: {query}
|
191 |
-
----------------------------
|
192 |
-
Answer: """
|
193 |
-
|
194 |
-
human_message_prompt = HumanMessagePromptTemplate.from_template(template=template)
|
195 |
-
chat_prompt = ChatPromptTemplate.from_messages([human_message_prompt])
|
196 |
-
prompt = chat_prompt.format_prompt(query=message, context=context)
|
197 |
-
response = intention_client.chat(messages=prompt.to_messages()).content
|
198 |
-
chat_history.append((message, response))
|
199 |
-
return "", chat_history
|
200 |
-
|
201 |
-
|
202 |
-
# Initialize clients
|
203 |
-
intention_client = OpenAI(api_key=yi_token, base_url=API_BASE)
|
204 |
-
embedding_function = MyEmbeddingFunction(model_name=model_name, token=hf_token, intention_client=intention_client)
|
205 |
-
chroma_db = initialize_chroma(collection_name="Tonic-instruct", embedding_function=embedding_function)
|
206 |
-
|
207 |
-
def upload_documents(files):
|
208 |
-
for file in files:
|
209 |
-
loader = UnstructuredFileLoader(file.name)
|
210 |
-
documents = loader.load()
|
211 |
-
add_documents_to_chroma(documents, embedding_function)
|
212 |
-
return "Documents uploaded and processed successfully!"
|
213 |
-
|
214 |
-
def query_documents(query):
|
215 |
-
model = load_model()
|
216 |
-
results = query_chroma(query)
|
217 |
-
return "\n\n".join([result.content for result in results])
|
218 |
-
|
219 |
-
with gr.Blocks() as demo:
|
220 |
-
with gr.Tab("Upload Documents"):
|
221 |
-
document_upload = gr.File(file_count="multiple", file_types=["document"])
|
222 |
-
upload_button = gr.Button("Upload and Process")
|
223 |
-
upload_button.click(upload_documents, inputs=document_upload, outputs=gr.Text())
|
224 |
-
|
225 |
-
with gr.Tab("Ask Questions"):
|
226 |
-
with gr.Row():
|
227 |
-
chat_interface = gr.ChatInterface(
|
228 |
-
answer_query,
|
229 |
-
additional_inputs=[
|
230 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
231 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
232 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
233 |
-
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
|
234 |
-
],
|
235 |
-
)
|
236 |
-
query_input = gr.Textbox(label="Query")
|
237 |
-
query_button = gr.Button("Query")
|
238 |
-
query_output = gr.Textbox()
|
239 |
-
query_button.click(query_documents, inputs=query_input, outputs=query_output)
|
240 |
-
|
241 |
-
if __name__ == "__main__":
|
242 |
-
# os.system("chroma run --host localhost --port 8000 &")
|
243 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
yijinaembed.py
ADDED
@@ -0,0 +1,231 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# app.py
|
2 |
+
import os
|
3 |
+
import re
|
4 |
+
import uuid
|
5 |
+
import gradio as gr
|
6 |
+
import torch
|
7 |
+
import torch.nn.functional as F
|
8 |
+
from dotenv import load_dotenv
|
9 |
+
from typing import List, Tuple, Dict, Any
|
10 |
+
from transformers import AutoTokenizer, AutoModel
|
11 |
+
from openai import OpenAI
|
12 |
+
from langchain_community.document_loaders import UnstructuredFileLoader
|
13 |
+
from langchain_chroma import Chroma
|
14 |
+
from chromadb import Documents, EmbeddingFunction, Embeddings
|
15 |
+
from chromadb.config import Settings
|
16 |
+
import chromadb
|
17 |
+
from utils import load_env_variables, parse_and_route, escape_special_characters
|
18 |
+
from globalvars import API_BASE, intention_prompt, tasks, system_message, metadata_prompt, model_name
|
19 |
+
import spaces
|
20 |
+
from langchain.retrievers.contextual_compression import ContextualCompressionRetriever
|
21 |
+
from langchain_community.document_compressors.jina_rerank import JinaRerank
|
22 |
+
from langchain import hub
|
23 |
+
from langchain.chains import create_retrieval_chain
|
24 |
+
from langchain.chains.retrieval import create_stuff_documents_chain
|
25 |
+
|
26 |
+
load_dotenv()
|
27 |
+
|
28 |
+
# os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:180'
|
29 |
+
# os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
|
30 |
+
# os.environ['CUDA_CACHE_DISABLE'] = '1'
|
31 |
+
|
32 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
33 |
+
|
34 |
+
hf_token, yi_token = load_env_variables()
|
35 |
+
|
36 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, token=hf_token, trust_remote_code=True)
|
37 |
+
model = None
|
38 |
+
|
39 |
+
@spaces.GPU
|
40 |
+
def load_model():
|
41 |
+
global model
|
42 |
+
if model is None:
|
43 |
+
model = AutoModel.from_pretrained(model_name, token=hf_token, trust_remote_code=True).to(device)
|
44 |
+
return model
|
45 |
+
|
46 |
+
# Load model
|
47 |
+
jina_model = load_model()
|
48 |
+
|
49 |
+
def clear_cuda_cache():
|
50 |
+
torch.cuda.empty_cache()
|
51 |
+
|
52 |
+
client = OpenAI(api_key=yi_token, base_url=API_BASE)
|
53 |
+
|
54 |
+
chroma_client = chromadb.Client(Settings())
|
55 |
+
|
56 |
+
chroma_collection = chroma_client.create_collection("all-my-documents")
|
57 |
+
|
58 |
+
class JinaEmbeddingFunction(EmbeddingFunction):
|
59 |
+
def __init__(self, model, tokenizer, intention_client):
|
60 |
+
self.model = model
|
61 |
+
self.tokenizer = tokenizer
|
62 |
+
self.intention_client = intention_client
|
63 |
+
|
64 |
+
def __call__(self, input: Documents) -> Tuple[List[List[float]], List[Dict[str, Any]]]:
|
65 |
+
embeddings_with_metadata = [self.compute_embeddings(doc) for doc in input]
|
66 |
+
embeddings = [item[0] for item in embeddings_with_metadata]
|
67 |
+
metadata = [item[1] for item in embeddings_with_metadata]
|
68 |
+
return embeddings, metadata
|
69 |
+
|
70 |
+
@spaces.GPU
|
71 |
+
def compute_embeddings(self, input_text: str):
|
72 |
+
escaped_input_text = escape_special_characters(input_text)
|
73 |
+
|
74 |
+
# Get the intention
|
75 |
+
intention_completion = self.intention_client.chat.completions.create(
|
76 |
+
model="yi-large",
|
77 |
+
messages=[
|
78 |
+
{"role": "system", "content": escape_special_characters(intention_prompt)},
|
79 |
+
{"role": "user", "content": escaped_input_text}
|
80 |
+
]
|
81 |
+
)
|
82 |
+
intention_output = intention_completion.choices[0].message.content
|
83 |
+
parsed_task = parse_and_route(intention_output)
|
84 |
+
selected_task = parsed_task if parsed_task in tasks else "DEFAULT"
|
85 |
+
task = tasks[selected_task]
|
86 |
+
|
87 |
+
# Get the metadata
|
88 |
+
metadata_completion = self.intention_client.chat.completions.create(
|
89 |
+
model="yi-large",
|
90 |
+
messages=[
|
91 |
+
{"role": "system", "content": escape_special_characters(metadata_prompt)},
|
92 |
+
{"role": "user", "content": escaped_input_text}
|
93 |
+
]
|
94 |
+
)
|
95 |
+
metadata_output = metadata_completion.choices[0].message.content
|
96 |
+
metadata = self.extract_metadata(metadata_output)
|
97 |
+
|
98 |
+
# Compute embeddings using Jina model
|
99 |
+
encoded_input = self.tokenizer(escaped_input_text, padding=True, truncation=True, return_tensors="pt").to(device)
|
100 |
+
with torch.no_grad():
|
101 |
+
model_output = self.model(**encoded_input, task=task)
|
102 |
+
|
103 |
+
embeddings = self.mean_pooling(model_output, encoded_input["attention_mask"])
|
104 |
+
embeddings = F.normalize(embeddings, p=2, dim=1)
|
105 |
+
|
106 |
+
return embeddings.cpu().numpy().tolist()[0], metadata
|
107 |
+
|
108 |
+
def extract_metadata(self, metadata_output: str) -> Dict[str, str]:
|
109 |
+
pattern = re.compile(r'\"(\w+)\": \"([^\"]+)\"')
|
110 |
+
matches = pattern.findall(metadata_output)
|
111 |
+
metadata = {key: value for key, value in matches}
|
112 |
+
return metadata
|
113 |
+
|
114 |
+
@staticmethod
|
115 |
+
def mean_pooling(model_output, attention_mask):
|
116 |
+
token_embeddings = model_output[0]
|
117 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
118 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
119 |
+
|
120 |
+
def load_documents(file_path: str, mode: str = "elements"):
|
121 |
+
loader = UnstructuredFileLoader(file_path, mode=mode)
|
122 |
+
docs = loader.load()
|
123 |
+
return [doc.page_content for doc in docs]
|
124 |
+
|
125 |
+
def initialize_chroma(collection_name: str, embedding_function: JinaEmbeddingFunction):
|
126 |
+
db = Chroma(client=chroma_client, collection_name=collection_name, embedding_function=embedding_function)
|
127 |
+
return db
|
128 |
+
|
129 |
+
@spaces.GPU
|
130 |
+
def add_documents_to_chroma(documents: list, embedding_function: JinaEmbeddingFunction):
|
131 |
+
for doc in documents:
|
132 |
+
embeddings, metadata = embedding_function.compute_embeddings(doc)
|
133 |
+
chroma_collection.add(
|
134 |
+
ids=[str(uuid.uuid1())],
|
135 |
+
documents=[doc],
|
136 |
+
embeddings=[embeddings],
|
137 |
+
metadatas=[metadata]
|
138 |
+
)
|
139 |
+
|
140 |
+
@spaces.GPU
|
141 |
+
def rerank_documents(query: str, documents: List[str]) -> List[str]:
|
142 |
+
compressor = JinaRerank()
|
143 |
+
retriever = chroma_db.as_retriever(search_kwargs={"k": 20})
|
144 |
+
compression_retriever = ContextualCompressionRetriever(
|
145 |
+
base_compressor=compressor, base_retriever=retriever
|
146 |
+
)
|
147 |
+
|
148 |
+
compressed_docs = compression_retriever.get_relevant_documents(query)
|
149 |
+
|
150 |
+
return [doc.page_content for doc in compressed_docs]
|
151 |
+
|
152 |
+
def query_chroma(query_text: str, embedding_function: JinaEmbeddingFunction):
|
153 |
+
query_embeddings, query_metadata = embedding_function.compute_embeddings(query_text)
|
154 |
+
result_docs = chroma_collection.query(
|
155 |
+
query_embeddings=[query_embeddings],
|
156 |
+
n_results=3
|
157 |
+
)
|
158 |
+
return result_docs
|
159 |
+
|
160 |
+
@spaces.GPU
|
161 |
+
def answer_query(message: str, chat_history: List[Tuple[str, str]], system_message: str, max_new_tokens: int, temperature: float, top_p: float):
|
162 |
+
# Query Chroma for relevant documents
|
163 |
+
results = query_chroma(message, embedding_function)
|
164 |
+
context = "\n\n".join([result['document'] for result in results['documents'][0]])
|
165 |
+
|
166 |
+
# Rerank the documents
|
167 |
+
reranked_docs = rerank_documents(message, context.split("\n\n"))
|
168 |
+
reranked_context = "\n\n".join(reranked_docs)
|
169 |
+
|
170 |
+
# Prepare the prompt for YI model
|
171 |
+
prompt = f"{system_message}\n\nContext: {reranked_context}\n\nHuman: {message}\n\nAssistant:"
|
172 |
+
|
173 |
+
# Generate response using YI model
|
174 |
+
response = client.chat.completions.create(
|
175 |
+
model="yi-large",
|
176 |
+
messages=[
|
177 |
+
{"role": "system", "content": system_message},
|
178 |
+
{"role": "user", "content": f"Context: {reranked_context}\n\nHuman: {message}"}
|
179 |
+
],
|
180 |
+
max_tokens=max_new_tokens,
|
181 |
+
temperature=temperature,
|
182 |
+
top_p=top_p
|
183 |
+
)
|
184 |
+
|
185 |
+
assistant_response = response.choices[0].message.content
|
186 |
+
chat_history.append((message, assistant_response))
|
187 |
+
return "", chat_history
|
188 |
+
|
189 |
+
# Initialize clients
|
190 |
+
intention_client = OpenAI(api_key=yi_token, base_url=API_BASE)
|
191 |
+
embedding_function = JinaEmbeddingFunction(jina_model, tokenizer, intention_client)
|
192 |
+
chroma_db = initialize_chroma(collection_name="Jina-embeddings", embedding_function=embedding_function)
|
193 |
+
|
194 |
+
@spaces.GPU
|
195 |
+
def upload_documents(files):
|
196 |
+
for file in files:
|
197 |
+
loader = UnstructuredFileLoader(file.name)
|
198 |
+
documents = loader.load()
|
199 |
+
add_documents_to_chroma([doc.page_content for doc in documents], embedding_function)
|
200 |
+
return "Documents uploaded and processed successfully!"
|
201 |
+
|
202 |
+
@spaces.GPU
|
203 |
+
def query_documents(query):
|
204 |
+
results = query_chroma(query, embedding_function)
|
205 |
+
reranked_docs = rerank_documents(query, [result for result in results['documents'][0]])
|
206 |
+
return "\n\n".join(reranked_docs)
|
207 |
+
|
208 |
+
with gr.Blocks() as demo:
|
209 |
+
with gr.Tab("Upload Documents"):
|
210 |
+
document_upload = gr.File(file_count="multiple", file_types=["document"])
|
211 |
+
upload_button = gr.Button("Upload and Process")
|
212 |
+
upload_button.click(upload_documents, inputs=document_upload, outputs=gr.Text())
|
213 |
+
|
214 |
+
with gr.Tab("Ask Questions"):
|
215 |
+
with gr.Row():
|
216 |
+
chat_interface = gr.ChatInterface(
|
217 |
+
answer_query,
|
218 |
+
additional_inputs=[
|
219 |
+
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
220 |
+
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
221 |
+
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
222 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
|
223 |
+
],
|
224 |
+
)
|
225 |
+
query_input = gr.Textbox(label="Query")
|
226 |
+
query_button = gr.Button("Query")
|
227 |
+
query_output = gr.Textbox()
|
228 |
+
query_button.click(query_documents, inputs=query_input, outputs=query_output)
|
229 |
+
|
230 |
+
if __name__ == "__main__":
|
231 |
+
demo.launch()
|