Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -62,11 +62,11 @@ def compute_embeddings(selected_task, input_text):
|
|
62 |
max_length = 2042
|
63 |
processed_texts = [f'Instruct: {task_description}\nQuery: {input_text}']
|
64 |
|
65 |
-
batch_dict =
|
66 |
-
batch_dict['input_ids'] = [input_ids + [
|
67 |
-
batch_dict =
|
68 |
batch_dict = {k: v.to(device) for k, v in batch_dict.items()}
|
69 |
-
outputs =
|
70 |
embeddings = last_token_pool(outputs.last_hidden_state, batch_dict['attention_mask'])
|
71 |
embeddings = F.normalize(embeddings, p=2, dim=1)
|
72 |
embeddings_list = embeddings.detach().cpu().numpy().tolist()
|
@@ -80,10 +80,10 @@ def compute_similarity(selected_task, sentence1, sentence2, extra_sentence1, ext
|
|
80 |
print(f"Selected task not found: {selected_task}")
|
81 |
return f"Error: Task '{selected_task}' not found. Please select a valid task."
|
82 |
# Compute embeddings for each sentence
|
83 |
-
embeddings1 =
|
84 |
-
embeddings2 =
|
85 |
-
embeddings3 =
|
86 |
-
embeddings4 =
|
87 |
|
88 |
# Convert embeddings to tensors
|
89 |
embeddings_tensor1 = torch.tensor(embeddings1).to(device).half()
|
@@ -92,9 +92,9 @@ def compute_similarity(selected_task, sentence1, sentence2, extra_sentence1, ext
|
|
92 |
embeddings_tensor4 = torch.tensor(embeddings4).to(device).half()
|
93 |
|
94 |
# Compute cosine similarity
|
95 |
-
similarity1 =
|
96 |
-
similarity2 =
|
97 |
-
similarity3 =
|
98 |
|
99 |
# Free memory
|
100 |
free_memory(embeddings1, embeddings2, embeddings3, embeddings4)
|
@@ -102,7 +102,7 @@ def compute_similarity(selected_task, sentence1, sentence2, extra_sentence1, ext
|
|
102 |
return similarity1, similarity2, similarity3
|
103 |
|
104 |
@spaces.GPU
|
105 |
-
def
|
106 |
tensor1 = torch.tensor(emb1).to(device).half()
|
107 |
tensor2 = torch.tensor(emb2).to(device).half()
|
108 |
similarity = F.cosine_similarity(tensor1, tensor2).item()
|
|
|
62 |
max_length = 2042
|
63 |
processed_texts = [f'Instruct: {task_description}\nQuery: {input_text}']
|
64 |
|
65 |
+
batch_dict = tokenizer(processed_texts, max_length=max_length - 1, return_attention_mask=False, padding=False, truncation=True)
|
66 |
+
batch_dict['input_ids'] = [input_ids + [tokenizer.eos_token_id] for input_ids in batch_dict['input_ids']]
|
67 |
+
batch_dict = tokenizer.pad(batch_dict, padding=True, return_attention_mask=True, return_tensors='pt')
|
68 |
batch_dict = {k: v.to(device) for k, v in batch_dict.items()}
|
69 |
+
outputs = model(**batch_dict)
|
70 |
embeddings = last_token_pool(outputs.last_hidden_state, batch_dict['attention_mask'])
|
71 |
embeddings = F.normalize(embeddings, p=2, dim=1)
|
72 |
embeddings_list = embeddings.detach().cpu().numpy().tolist()
|
|
|
80 |
print(f"Selected task not found: {selected_task}")
|
81 |
return f"Error: Task '{selected_task}' not found. Please select a valid task."
|
82 |
# Compute embeddings for each sentence
|
83 |
+
embeddings1 = compute_embeddings(selected_task, sentence1)
|
84 |
+
embeddings2 = compute_embeddings(selected_task, sentence2)
|
85 |
+
embeddings3 = compute_embeddings(selected_task, extra_sentence1)
|
86 |
+
embeddings4 = compute_embeddings(selected_task, extra_sentence2)
|
87 |
|
88 |
# Convert embeddings to tensors
|
89 |
embeddings_tensor1 = torch.tensor(embeddings1).to(device).half()
|
|
|
92 |
embeddings_tensor4 = torch.tensor(embeddings4).to(device).half()
|
93 |
|
94 |
# Compute cosine similarity
|
95 |
+
similarity1 = compute_cosine_similarity(embeddings1, embeddings2)
|
96 |
+
similarity2 = compute_cosine_similarity(embeddings1, embeddings3)
|
97 |
+
similarity3 = compute_cosine_similarity(embeddings1, embeddings4)
|
98 |
|
99 |
# Free memory
|
100 |
free_memory(embeddings1, embeddings2, embeddings3, embeddings4)
|
|
|
102 |
return similarity1, similarity2, similarity3
|
103 |
|
104 |
@spaces.GPU
|
105 |
+
def compute_cosine_similarity(emb1, emb2):
|
106 |
tensor1 = torch.tensor(emb1).to(device).half()
|
107 |
tensor2 = torch.tensor(emb2).to(device).half()
|
108 |
similarity = F.cosine_similarity(tensor1, tensor2).item()
|