|
import io |
|
|
|
import pandas as pd |
|
import streamlit as st |
|
from streamlit_drawable_canvas import st_canvas |
|
import hashlib |
|
import pypdfium2 |
|
|
|
from texify.inference import batch_inference |
|
from texify.model.model import load_model |
|
from texify.model.processor import load_processor |
|
from texify.settings import settings |
|
import subprocess |
|
import re |
|
from PIL import Image |
|
|
|
MAX_WIDTH = 1000 |
|
|
|
|
|
def replace_katex_invalid(string): |
|
|
|
string = re.sub(r'\\tag\{.*?\}', '', string) |
|
string = re.sub(r'\\Big\{(.*?)\}|\\big\{(.*?)\}', r'\1\2', string) |
|
return string |
|
|
|
@st.cache_resource() |
|
def load_model_cached(): |
|
return load_model() |
|
|
|
|
|
@st.cache_resource() |
|
def load_processor_cached(): |
|
return load_processor() |
|
|
|
|
|
@st.cache_data() |
|
def infer_image(pil_image, bbox, temperature): |
|
input_img = pil_image.crop(bbox) |
|
model_output = batch_inference([input_img], model, processor, temperature=temperature) |
|
return model_output[0] |
|
|
|
|
|
def open_pdf(pdf_file): |
|
stream = io.BytesIO(pdf_file.getvalue()) |
|
return pypdfium2.PdfDocument(stream) |
|
|
|
|
|
@st.cache_data() |
|
def get_page_image(pdf_file, page_num, dpi=96): |
|
doc = open_pdf(pdf_file) |
|
renderer = doc.render( |
|
pypdfium2.PdfBitmap.to_pil, |
|
page_indices=[page_num - 1], |
|
scale=dpi / 72, |
|
) |
|
png = list(renderer)[0] |
|
png_image = png.convert("RGB") |
|
return png_image |
|
|
|
|
|
@st.cache_data() |
|
def get_uploaded_image(in_file): |
|
return Image.open(in_file).convert("RGB") |
|
|
|
|
|
@st.cache_data() |
|
def page_count(pdf_file): |
|
doc = open_pdf(pdf_file) |
|
return len(doc) |
|
|
|
|
|
def get_canvas_hash(pil_image): |
|
return hashlib.md5(pil_image.tobytes()).hexdigest() |
|
|
|
|
|
@st.cache_data() |
|
def get_image_size(pil_image): |
|
if pil_image is None: |
|
return 800, 600 |
|
height, width = pil_image.height, pil_image.width |
|
if width > MAX_WIDTH: |
|
scale = MAX_WIDTH / width |
|
height = int(height * scale) |
|
width = MAX_WIDTH |
|
return height, width |
|
|
|
|
|
st.set_page_config(layout="wide") |
|
|
|
top_message = """### Texify |
|
|
|
After the model loads, upload an image or a pdf, then draw a box around the equation or text you want to OCR by clicking and dragging. Texify will convert it to Markdown with LaTeX math on the right. |
|
|
|
If you have already cropped your image, select "OCR image" in the sidebar instead. |
|
""" |
|
|
|
st.markdown(top_message) |
|
col1, col2 = st.columns([.7, .3]) |
|
|
|
model = load_model_cached() |
|
processor = load_processor_cached() |
|
|
|
in_file = st.sidebar.file_uploader("PDF file or image:", type=["pdf", "png", "jpg", "jpeg", "gif", "webp"]) |
|
if in_file is None: |
|
st.stop() |
|
|
|
filetype = in_file.type |
|
whole_image = False |
|
if "pdf" in filetype: |
|
page_count = page_count(in_file) |
|
page_number = st.sidebar.number_input(f"Page number out of {page_count}:", min_value=1, value=1, max_value=page_count) |
|
|
|
pil_image = get_page_image(in_file, page_number) |
|
else: |
|
pil_image = get_uploaded_image(in_file) |
|
whole_image = st.sidebar.button("OCR image") |
|
|
|
temperature = st.sidebar.slider("Generation temperature:", min_value=0.0, max_value=1.0, value=0.0, step=0.05) |
|
|
|
canvas_hash = get_canvas_hash(pil_image) if pil_image else "canvas" |
|
|
|
with col1: |
|
|
|
canvas_result = st_canvas( |
|
fill_color="rgba(255, 165, 0, 0.1)", |
|
stroke_width=1, |
|
stroke_color="#FFAA00", |
|
background_color="#FFF", |
|
background_image=pil_image, |
|
update_streamlit=True, |
|
height=get_image_size(pil_image)[0], |
|
width=get_image_size(pil_image)[1], |
|
drawing_mode="rect", |
|
point_display_radius=0, |
|
key=canvas_hash, |
|
) |
|
|
|
if canvas_result.json_data is not None or whole_image: |
|
objects = pd.json_normalize(canvas_result.json_data["objects"]) |
|
bbox_list = None |
|
if objects.shape[0] > 0: |
|
boxes = objects[objects["type"] == "rect"][["left", "top", "width", "height"]] |
|
boxes["right"] = boxes["left"] + boxes["width"] |
|
boxes["bottom"] = boxes["top"] + boxes["height"] |
|
bbox_list = boxes[["left", "top", "right", "bottom"]].values.tolist() |
|
if whole_image: |
|
bbox_list = [(0, 0, pil_image.width, pil_image.height)] |
|
|
|
if bbox_list: |
|
with col2: |
|
inferences = [infer_image(pil_image, bbox, temperature) for bbox in bbox_list] |
|
for idx, inference in enumerate(reversed(inferences)): |
|
st.markdown(f"### {len(inferences) - idx}") |
|
katex_markdown = replace_katex_invalid(inference) |
|
st.markdown(katex_markdown) |
|
st.code(inference) |
|
st.divider() |
|
|
|
with col2: |
|
tips = """ |
|
### Usage tips |
|
- Don't make your boxes too small or too large. See the examples and the video in the [README](https://github.com/vikParuchuri/texify) for more info. |
|
- Texify is sensitive to how you draw the box around the text you want to OCR. If you get bad results, try selecting a slightly different box, or splitting the box into multiple. |
|
- You can try changing the temperature value on the left if you don't get good results. This controls how "creative" the model is. |
|
- Sometimes KaTeX won't be able to render an equation (red error text), but it will still be valid LaTeX. You can copy the LaTeX and render it elsewhere. |
|
""" |
|
st.markdown(tips) |