File size: 3,886 Bytes
47796ca
8347fc4
 
 
 
4e2df07
 
 
8347fc4
 
 
b884f75
 
c3ced67
b884f75
 
 
c3ced67
 
 
 
 
 
b6bd3b8
c3ced67
 
 
8347fc4
c3ced67
 
b6bd3b8
c3ced67
 
 
 
8347fc4
c3ced67
b884f75
 
c3ced67
b884f75
c3ced67
 
b884f75
 
c3ced67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8347fc4
 
4e2df07
b884f75
8347fc4
 
 
 
 
4e2df07
b884f75
8347fc4
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import spaces
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
import gradio as gr

title = """# 🙋🏻‍♂️Welcome to 🌟Tonic's Defog 🌬️🌁🌫️SqlCoder-2 
You can use this Space to test out the current model [defog/sqlcoder2](https://huggingface.co/defog/sqlcoder2). [defog/sqlcoder2](https://huggingface.co/defog/sqlcoder2) is a 15B parameter model that doesn't outperform gpt-4 and gpt-4-turbo for natural language to SQL generation tasks on our sql-eval framework, and significantly outperforms all popular open-source models.
You can also use efog 🌬️🌁🌫️SqlCoder by cloning this space. 🧬🔬🔍 Simply click here: <a style="display:inline-block" href="https://huggingface.co/spaces/Tonic/sqlcoder2?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></h3> 
Join us : 🌟TeamTonic🌟 is always making cool demos! Join our active builder's🛠️community 👻[![Let's build the future of AI together! 🚀🤖](https://discordapp.com/api/guilds/1109943800132010065/widget.png)](https://discord.gg/GWpVpekp) On 🤗Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Polytonic](https://github.com/tonic-ai) & contribute to 🌟 [Poly](https://github.com/tonic-ai/poly) 🤗Big thanks to Yuvi Sharma and all the folks at huggingface for the community grant 🤗
"""

global_tokenizer, global_model = None, None

def load_tokenizer_model(model_name):
    global global_tokenizer, global_model
    global_tokenizer = AutoTokenizer.from_pretrained(model_name)
    global_model = AutoModelForCausalLM.from_pretrained(
        model_name,
        trust_remote_code=True,
        torch_dtype=torch.float16,
        device_map="auto",
        use_cache=True,
    )

def generate_prompt(question, prompt_file="prompt.md", metadata_file="metadata.sql"):
    with open(prompt_file, "r") as f:
        prompt = f.read()

    with open(metadata_file, "r") as f:
        table_metadata_string = f.read()

    prompt = prompt.format(
        user_question=question, table_metadata_string=table_metadata_string
    )
    return prompt

@spaces.GPU
def run_inference(question):
    global global_tokenizer, global_model
    prompt = generate_prompt(question)
    eos_token_id = global_tokenizer.eos_token_id
    pipe = pipeline(
        "text-generation",
        model=global_model,
        tokenizer=global_tokenizer,
        max_new_tokens=300,
        do_sample=False,
        num_beams=5,
    )
    generated_query = (
        pipe(
            prompt,
            num_return_sequences=1,
            eos_token_id=eos_token_id,
            pad_token_id=eos_token_id,
        )[0]["generated_text"]
        .split("```sql")[-1]
        .split("```")[0]
        .split(";")[0]
        .strip()
        + ";"
    )
    return generated_query

def main():
    model_name = "defog/sqlcoder2"
    load_tokenizer_model(model_name)

    with gr.Blocks() as demo:
        gr.Markdown(title)
        question = gr.Textbox(label="Enter your question")
        submit = gr.Button("Generate SQL Query")
        output = gr.Textbox(label="🌬️🌁🌫️SqlCoder-2")
        submit.click(fn=run_inference, inputs=question, outputs=output)

    demo.launch()

if __name__ == "__main__":
    main()