|
import gradio as gr |
|
import cv2 |
|
import torch |
|
import numpy as np |
|
from torchvision import transforms |
|
|
|
title = "Remove Bg" |
|
description = "Automatically remove the image background from a profile photo." |
|
article = "<p style='text-align: center'><a href='https://news.machinelearning.sg/posts/beautiful_profile_pics_remove_background_image_with_deeplabv3/'>Blog</a> | <a href='https://github.com/eugenesiow/practical-ml'>Github Repo</a></p>" |
|
|
|
|
|
def make_transparent_foreground(pic, mask): |
|
|
|
b, g, r = cv2.split(np.array(pic).astype('uint8')) |
|
|
|
a = np.ones(mask.shape, dtype='uint8') * 255 |
|
|
|
alpha_im = cv2.merge([b, g, r, a], 4) |
|
|
|
bg = np.zeros(alpha_im.shape) |
|
|
|
new_mask = np.stack([mask, mask, mask, mask], axis=2) |
|
|
|
foreground = np.where(new_mask, alpha_im, bg).astype(np.uint8) |
|
|
|
return foreground |
|
|
|
|
|
def remove_background(input_image): |
|
preprocess = transforms.Compose([ |
|
transforms.ToTensor(), |
|
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), |
|
]) |
|
|
|
input_tensor = preprocess(input_image) |
|
input_batch = input_tensor.unsqueeze(0) |
|
|
|
|
|
if torch.cuda.is_available(): |
|
input_batch = input_batch.to('cuda') |
|
model.to('cuda') |
|
|
|
with torch.no_grad(): |
|
output = model(input_batch)['out'][0] |
|
output_predictions = output.argmax(0) |
|
|
|
|
|
mask = output_predictions.byte().cpu().numpy() |
|
background = np.zeros(mask.shape) |
|
bin_mask = np.where(mask, 255, background).astype(np.uint8) |
|
|
|
foreground = make_transparent_foreground(input_image, bin_mask) |
|
|
|
return foreground, bin_mask |
|
|
|
|
|
def inference(img): |
|
foreground, _ = remove_background(img) |
|
return foreground |
|
|
|
|
|
torch.hub.download_url_to_file('https://pbs.twimg.com/profile_images/691700243809718272/z7XZUARB_400x400.jpg', |
|
'demis.jpg') |
|
torch.hub.download_url_to_file('https://hai.stanford.edu/sites/default/files/styles/person_medium/public/2020-03/hai_1512feifei.png?itok=INFuLABp', |
|
'lifeifei.png') |
|
model = torch.hub.load('pytorch/vision:v0.6.0', 'deeplabv3_resnet101', pretrained=True) |
|
model.eval() |
|
|
|
gr.Interface( |
|
inference, |
|
gr.inputs.Image(type="pil", label="Input"), |
|
gr.outputs.Image(type="pil", label="Output"), |
|
title=title, |
|
description=description, |
|
article=article, |
|
examples=[['demis.jpg'], ['lifeifei.png']], |
|
enable_queue=True |
|
).launch(debug=False) |
|
|