Spaces:
Running
Running
from typing import Optional | |
import gradio as gr | |
import numpy as np | |
import torch | |
from PIL import Image | |
import io | |
import base64, os | |
from utils import check_ocr_box, get_yolo_model, get_caption_model_processor, get_som_labeled_img | |
from PIL import Image | |
from ultralytics import YOLO | |
yolo_model = YOLO('weights/icon_detect/best.pt') | |
from transformers import AutoProcessor, AutoModelForCausalLM | |
processor = AutoProcessor.from_pretrained("microsoft/Florence-2-base", trust_remote_code=True) | |
model = AutoModelForCausalLM.from_pretrained( | |
"weights/icon_caption_florence", | |
torch_dtype=torch.float32, | |
trust_remote_code=True | |
) | |
caption_model_processor = {'processor': processor, 'model': model} | |
print('Finished loading model.') | |
platform = 'pc' | |
draw_bbox_config = { | |
'text_scale': 0.8, | |
'text_thickness': 2, | |
'text_padding': 2, | |
'thickness': 2, | |
} | |
MARKDOWN = """ | |
# OmniParser for Pure Vision Based General GUI Agent 🔥 | |
<div> | |
<a href="https://arxiv.org/pdf/2408.00203"> | |
<img src="https://img.shields.io/badge/arXiv-2408.00203-b31b1b.svg" alt="Arxiv" style="display:inline-block;"> | |
</a> | |
</div> | |
OmniParser is a screen parsing tool to convert general GUI screens to structured elements. | |
""" | |
def process( | |
image_input, | |
box_threshold, | |
iou_threshold | |
) -> Optional[Image.Image]: | |
image_save_path = 'imgs/saved_image_demo.png' | |
image_input.save(image_save_path) | |
ocr_bbox_rslt, is_goal_filtered = check_ocr_box( | |
image_save_path, | |
display_img=False, | |
output_bb_format='xyxy', | |
goal_filtering=None, | |
easyocr_args={'paragraph': False, 'text_threshold': 0.9}, | |
use_paddleocr=True | |
) | |
text, ocr_bbox = ocr_bbox_rslt | |
dino_labeled_img, label_coordinates, parsed_content_list = get_som_labeled_img( | |
image_save_path, | |
yolo_model, | |
BOX_TRESHOLD=box_threshold, | |
output_coord_in_ratio=True, | |
ocr_bbox=ocr_bbox, | |
draw_bbox_config=draw_bbox_config, | |
caption_model_processor=caption_model_processor, | |
ocr_text=text, | |
iou_threshold=iou_threshold | |
) | |
image = Image.open(io.BytesIO(base64.b64decode(dino_labeled_img))) | |
print('Finished processing.') | |
parsed_content_list_str = '\n'.join(parsed_content_list) | |
label_coordinates_str = label_coordinates # '\n'.join([str(coord) for coord in label_coordinates]) | |
return image, parsed_content_list_str, label_coordinates_str | |
with gr.Blocks() as demo: | |
gr.Markdown(MARKDOWN) | |
with gr.Row(): | |
with gr.Column(): | |
image_input_component = gr.Image(type='pil', label='Upload Image') | |
box_threshold_component = gr.Slider( | |
label='Box Threshold', minimum=0.01, maximum=1.0, step=0.01, value=0.05) | |
iou_threshold_component = gr.Slider( | |
label='IOU Threshold', minimum=0.01, maximum=1.0, step=0.01, value=0.1) | |
submit_button_component = gr.Button( | |
value='Submit', variant='primary') | |
with gr.Column(): | |
image_output_component = gr.Image(type='pil', label='Image Output') | |
text_output_component = gr.Textbox( | |
label='Parsed Screen Elements', placeholder='Text Output') | |
coordinates_output_component = gr.Textbox( | |
label='Coordinates', placeholder='Coordinates Output') | |
submit_button_component.click( | |
fn=process, | |
inputs=[ | |
image_input_component, | |
box_threshold_component, | |
iou_threshold_component | |
], | |
outputs=[ | |
image_output_component, | |
text_output_component, | |
coordinates_output_component | |
] | |
) | |
demo.queue().launch(share=False) | |