File size: 19,186 Bytes
12b7e8f
 
96d3362
 
 
718d231
96d3362
fffe047
6512609
96d3362
ecd740b
bc2a174
 
 
96d3362
bc2a174
96d3362
 
 
 
 
 
 
 
fd0f496
bc2a174
96d3362
8f21b89
96d3362
 
 
 
12b7e8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba42f25
0f98ea0
d3f89de
0f98ea0
 
 
 
 
d3f89de
4557ff8
 
0f98ea0
fffe047
 
 
f0f4ea0
5a28255
fffe047
62e2909
8c5938d
a5b1363
de3a3ea
b6433bb
aa31d18
b6433bb
 
 
 
8c5938d
4ba24c3
 
8c5938d
de3a3ea
 
48ae6b7
de3a3ea
48ae6b7
8c5938d
de3a3ea
00765ea
18edfec
96d3362
18edfec
 
 
 
eeff5a7
aa31d18
02664bd
 
b6433bb
4ba24c3
02664bd
 
b1c0e1c
 
18edfec
ad8e8ee
bcce480
48ac9c9
a3eabb7
ad8e8ee
bcce480
 
740c83b
 
bcce480
 
 
a3eabb7
0d89b24
 
 
eeff5a7
b77a280
33db681
ad8e8ee
6354e98
96d3362
 
718d231
96d3362
 
 
09bf063
96d3362
dc27637
65df123
aef128b
 
 
 
 
 
 
96d3362
8f21b89
6512609
ef00b69
718d231
 
 
 
 
 
 
 
96d3362
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc27637
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aef128b
dc27637
 
96d3362
dc27637
 
 
 
718d231
 
96d3362
 
 
dc27637
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aef128b
dc27637
 
96d3362
dc27637
 
 
96d3362
 
 
 
dc27637
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aef128b
dc27637
 
96d3362
dc27637
96d3362
dc27637
96d3362
 
 
 
dc27637
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aef128b
dc27637
 
96d3362
dc27637
96d3362
dc27637
96d3362
 
 
 
 
dc27637
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aef128b
dc27637
 
96d3362
dc27637
718d231
dc27637
6512609
96d3362
 
b77a280
718d231
 
 
 
 
77c2a5e
6512609
77c2a5e
6512609
 
 
 
718d231
6512609
 
 
 
 
 
 
 
718d231
6512609
 
 
 
 
 
bcce480
 
335d0c1
 
 
 
 
 
 
 
 
6512609
335d0c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
                    
                    
import streamlit as st
from transformers import pipeline
import re
import time
import requests
from PIL import Image
import itertools

st.set_page_config(page_title="FACTIFY - 5WQA", layout="wide")

HF_SPACES_API_KEY = st.secrets["HF_token"]

API_URL = "https://api-inference.huggingface.co/models/microsoft/prophetnet-large-uncased-squad-qg"
headers = {"Authorization": HF_SPACES_API_KEY}

def query(payload):
	response = requests.post(API_URL, headers=headers, json=payload)
	return response.json()


#-----------------------------------------------------------

API_URL_evidence = "https://api-inference.huggingface.co/models/google/flan-t5-xxl"
headers_evidence = {"Authorization": HF_SPACES_API_KEY}

# @st.cache(suppress_st_warning=True)
def query_evidence(payload):
	response = requests.post(API_URL_evidence, headers=headers_evidence, json=payload)
	return response.json()

#--------------------------------------------------------------------------------------------
def model_load_qg(answer,claim):
    FACT_TO_GENERATE_QUESTION_FROM = f"""{answer} [SEP] {claim}"""
    while True:
        try:
            question_ids = query({"inputs":FACT_TO_GENERATE_QUESTION_FROM, 
                                "num_beams":5, 
                                "early_stopping":True,
                                "min_length": 100,
                                "wait_for_model":True})[0]['generated_text'].capitalize()
            break
        except:
            time.sleep(1)
    return  question_ids
                    
def model_load_qa(question_ids,evidence):                    

    # Wait until the model is loaded
    while True:
        try:
            input_evidence = f"answer_the_next_question_from_context: {question_ids} context: {evidence}"
            answer_evidence = query_evidence({"inputs":input_evidence,"truncation":True,"wait_for_model":True})[0]['generated_text']
            break
        except:
            time.sleep(1)
    return answer_evidence   


#-----------------------------------------------------------
st.title('Welcome to :blue[FACTIFY - 5WQA] ') 

# st.set_page_config(
#     page_title="Welcome to :blue[FACTIFY - 5WQA]",
#     layout="wide"
# )
# st.markdown("<center> <h2> 5W Aspect-based Fact Verification through Question Answering :blue[Web Demo]", unsafe_allow_html=True)

#st.markdown("<center>Ask a question about the collapse of the Silicon Valley Bank (SVB).</center>", unsafe_allow_html=True)

st.header('5W Aspect-based Fact Verification through Question Answering :blue[Web Demo]')
image = Image.open('5W QA Illustration.jpg')
st.image(image, caption='5W QA Generation Pipeline')

st.subheader('Here are a few steps to begin exploring and interacting with this demo.')
st.caption('First you need to input your claim.')
st.caption('Then you need to input your evidence.')
st.caption('Upon completing these two steps, kindly wait for a minute to receive the results.')

st.caption('Start by inputting the following instance of a claim and corresponding evidence into the designated text fields.')
#-----------------------------------------------------------------------------------------------

st.caption('**Example 1**')
st.caption(''':green[Claim:] :point_right: Moderna's legal actions towards Pfizer-BioNTech indicate that the development of COVID-19 vaccines was underway prior to the commencement of the pandemic.''')

st.caption(''':green[Evidence:] :point_right: Moderna is suing Pfizer and BioNTech for patent infringement, alleging the rival companies used key parts of its mRNA technology to develop their COVID-19 vaccine. Moderna’s patents were filed between 2010 and 2016.
 	''')

# st.caption(''':green[Evidence:] :point_right: Due to the consumers increasingly relying on online retailers, 
# Amazon planned to hire over 99,000 workers in the warehouse and delivery sector during the Pandemic in the USA.''')

#-----------------------------------------------------------------------------------------------
st.caption('**Example 2**')
st.caption(''':green[Claim:] :point_right: In China, Buddhist monks and nuns lived together in places such as the Yunnan monastery.''')

st.caption(''':green[Evidence:] :point_right: Monastics in Japan are particularly exceptional in the Buddhist tradition because the monks and nuns can marry after receiving their higher ordination . 	''')

#-----------------------------------------------------------------------------------------------
st.caption('**Example 3**')
st.caption(''':green[Claim:] :point_right: In Batman, Penguin hydrates the henchmen with water contaminated with atomic waste.''')

st.caption(''':green[Evidence:] :point_right: And Penguin even schemes his way into the Batcave along with five dehydrated henchmen ; 
this plan fails when the henchmen are unexpectedly killed 
when he mistakenly rehydrates them with heavy water contaminated with atomic waste , 
regularly used to recharge the Batcave s atomic pile . 	''')

#-----------------------------------------------------------

st.caption('**Example 4**')
st.caption(''':green[Claim:] :point_right: Amazon to hire 100K workers and until April Amazon will raise hourly wages by $2  due to pandemic demand.''')
st.caption(''':green[Evidence:] : Due to the consumers increasingly relying on online retailers, Amazon planned to hire over 99,000 workers in the warehouse and delivery sector during the Pandemic in the USA.''')
#-----------------------------------------------------------

def proc():
    st.write(st.session_state.text_key)

    
# claim_text=st.text_area("Enter your claim:", on_change=proc, key='text_key')


        
# evidence_text=st.text_area("Enter your evidence:")
with st.form(key="claim_evidence_form",clear_on_submit=True):
    claim_text = st.text_input("Enter claim:")
    evidence_text = st.text_input("Enter evidence:")
    submitted = st.form_submit_button("Submit")

        

# form_evidence = st.form(key='my_evidence')
# form_evidence.text_input(label='Enter your evidence')
# evidence_text = form_evidence.form_submit_button(label='Submit')

# if evidence_text:
    #st.caption(':green[Kindly hold on for a few minutes while the QA pairs are being generated]')
    #st.caption(':blue[At times, you may encounter null/none outputs, which could be a result of a delay in loading the models through the API. If you experience this problem, kindly try again after a few minutes.]')


import pandas as pd
from rouge_score import rouge_scorer
import numpy as np
from allennlp.predictors.predictor import Predictor
import allennlp_models.tagging
predictor = Predictor.from_path("structured-prediction-srl-bert.tar.gz")

#---------------------------------------------------------------
list_of_pronouns = ["I","i", "you", "he", "she", "it", "we", "they", "me", "him", "her", "us", "them", 
            "mine", "yours", "his", "hers", "its", "ours", "theirs",
            "this", "that", "these", "those",
            "myself", "yourself", "himself", "herself", "itself", "ourselves", "yourselves", "themselves",
            "who", "whom", "what", "which", "whose",
            "all", "another", "any", "anybody", "anyone", "anything", "both", "each", "either", 
            "everybody", "everyone", "everything", "few", "many", "neither", "nobody", "none", "nothing",
            "one", "other", "several", "some", "somebody", "someone", "something"]
#---------------------------------------------------------------
# @st.cache
def srl(text):
    import re
    def remove_special_chars(text):
        # Remove special characters that are not in between numbers
        text = re.sub(r'(?<!\d)[^\w\s]+(?!\d)', '', text)

        return text

    df = pd.DataFrame({'claim' : remove_special_chars(text)},index=[0])

    def srl_allennlp(sent):
      try:
        #result = predictor.predict(sentence=sent)['verbs'][0]['description']
        #result = predictor.predict(sentence=sent)['verbs'][0]['tags']
        result = predictor.predict(sentence=sent)
        return(result)
      except IndexError: 
        pass
      #return(predictor.predict(sentence=sent))

    df['allennlp_srl'] = df['claim'].apply(lambda x: srl_allennlp(x))

    df['number_of_verbs'] = ''
    df['verbs_group'] = ''
    df['words'] = ''
    df['verbs'] = ''
    df['modified'] =''

    col1 = df['allennlp_srl']
    for i in range(len(col1)):
      num_verb = len(col1[i]['verbs'])
      df['number_of_verbs'][i] = num_verb
      df['verbs_group'][i] = col1[i]['verbs']
      df['words'][i] = col1[i]['words']

      x=[]
      for verb in range(len(col1[i]['verbs'])):
        x.append(col1[i]['verbs'][verb]['verb'])
      df['verbs'][i] = x

      verb_dict ={}
      desc = []
      for j in range(len(col1[i]['verbs'])):
        string = (col1[i]['verbs'][j]['description'])
        string = string.replace("ARG0", "who")
        string = string.replace("ARG1", "what")
        string = string.replace("ARGM-TMP", "when")
        string = string.replace("ARGM-LOC", "where")
        string = string.replace("ARGM-CAU", "why")
        desc.append(string)
        verb_dict[col1[i]['verbs'][j]['verb']]=string
      df['modified'][i] = verb_dict


    #----------FOR COLUMN "WHO"------------#
    df['who'] = ''
    for j in range(len(df['modified'])):
        val_list = []
        val_string = ''
        for k,v in df['modified'][j].items():
            val_list.append(v)

        who = set() # use set to remove duplicates
        for indx in range(len(val_list)):
            val_string = val_list[indx]
            pos = val_string.find("who: ")
            substr = ''

            if pos != -1:
                for i in range(pos+5, len(val_string)):
                    if val_string[i] == "]":
                        break
                    else:
                        substr = substr + val_string[i]
                substr = substr.strip() # remove leading/trailing white space
                pronouns = list_of_pronouns
                if substr.lower() not in pronouns and not substr.lower().endswith("'s"): # remove pronouns and possessive pronouns
                    who.add(substr)
            else:
                pass

        df['who'][j] = "<sep>".join(who)

#     else:
#         continue
    #----------FOR COLUMN "WHAT"------------#
    df['what'] = ''
    for j in range(len(df['modified'])):
        val_list = []
        val_string = ''
        for k,v in df['modified'][j].items():
            val_list.append(v)

        what = set() # use set to remove duplicates
        for indx in range(len(val_list)):
            val_string = val_list[indx]
            pos = val_string.find("what: ")
            substr = ''

            if pos != -1:
                for i in range(pos+5, len(val_string)):
                    if val_string[i] == "]":
                        break
                    else:
                        substr = substr + val_string[i]
                substr = substr.strip() # remove leading/trailing white space
                pronouns = list_of_pronouns
                if substr.lower() not in pronouns and not substr.lower().endswith("'s"): # remove pronouns and possessive pronouns
                    what.add(substr)
            else:
                pass

        df['what'][j] = "<sep>".join(what)

    #----------FOR COLUMN "WHY"------------#
    df['why'] = ''
    for j in range(len(df['modified'])):
        val_list = []
        val_string = ''
        for k,v in df['modified'][j].items():
            val_list.append(v)

        why = set() # use set to remove duplicates
        for indx in range(len(val_list)):
            val_string = val_list[indx]
            pos = val_string.find("why: ")
            substr = ''

            if pos != -1:
                for i in range(pos+5, len(val_string)):
                    if val_string[i] == "]":
                        break
                    else:
                        substr = substr + val_string[i]
                substr = substr.strip() # remove leading/trailing white space
                pronouns = list_of_pronouns
                if substr.lower() not in pronouns and not substr.lower().endswith("'s"): # remove pronouns and possessive pronouns
                    why.add(substr)
            else:
                pass

        df['why'][j] = "<sep>".join(why)

     #----------FOR COLUMN "WHEN"------------#
    df['when'] = ''
    for j in range(len(df['modified'])):
        val_list = []
        val_string = ''
        for k,v in df['modified'][j].items():
            val_list.append(v)

        when = set() # use set to remove duplicates
        for indx in range(len(val_list)):
            val_string = val_list[indx]
            pos = val_string.find("when: ")
            substr = ''

            if pos != -1:
                for i in range(pos+5, len(val_string)):
                    if val_string[i] == "]":
                        break
                    else:
                        substr = substr + val_string[i]
                substr = substr.strip() # remove leading/trailing white space
                pronouns = list_of_pronouns
                if substr.lower() not in pronouns and not substr.lower().endswith("'s"): # remove pronouns and possessive pronouns
                    when.add(substr)
            else:
                pass

        df['when'][j] = "<sep>".join(when)


    #----------FOR COLUMN "WHERE"------------#
    df['where'] = ''
    for j in range(len(df['modified'])):
        val_list = []
        val_string = ''
        for k,v in df['modified'][j].items():
            val_list.append(v)

        where = set() # use set to remove duplicates
        for indx in range(len(val_list)):
            val_string = val_list[indx]
            pos = val_string.find("where: ")
            substr = ''

            if pos != -1:
                for i in range(pos+5, len(val_string)):
                    if val_string[i] == "]":
                        break
                    else:
                        substr = substr + val_string[i]
                substr = substr.strip() # remove leading/trailing white space
                pronouns = list_of_pronouns
                if substr.lower() not in pronouns and not substr.lower().endswith("'s"): # remove pronouns and possessive pronouns
                    where.add(substr)
            else:
                pass

        df['where'][j] = "<sep>".join(where)
    return who,what,when,where,why

#--------------------------------------------------------------------------    
# @st.cache
def calc_rouge_l_score(list_of_evidence, list_of_ans):
    scorer = rouge_scorer.RougeScorer(['rougeL'], use_stemmer=True)
    scores = scorer.score(' '.join(list_of_evidence), ' '.join(list_of_ans))
    return scores['rougeL'].fmeasure
#-------------------------------------------------------------------------
def qa_list_gen(claim,srl_list,evidence):
    list_of_qa_pipeline=[]    
    for index,answer_claim in enumerate(srl_list):
        question = model_load_qg(answer_claim,claim)
        answer_evidence = model_load_qa(question,evidence)
        if answer_evidence.lower() in evidence.lower():
            pass
        else:
            answer_evidence=""
        threshold = 0.2
        list_of_pairs = [(answer_evidence, answer_claim)]
        rouge_l_score = calc_rouge_l_score(answer_evidence, answer_claim)
        if rouge_l_score >= threshold:
            verification_status = '✅ Verified Valid'
        elif rouge_l_score == 0:
            verification_status = '❔ Not verifiable'
        else:
            verification_status = '❌ Verified False'
        qa_pipeline=[question,answer_claim,answer_evidence,verification_status]
        list_of_qa_pipeline.append(qa_pipeline)    
    return list_of_qa_pipeline    
    
#-------------------------------------------------------------------------
# Handle form submission
if submitted and claim_text and evidence_text:
    st.caption(':green[Kindly hold on for a few minutes while the QA pairs are being generated]')
    srl_list = list(itertools.chain(*[list(s) for s in srl(claim_text)]))
    qa_list=qa_list_gen(claim_text,srl_list,evidence_text)
    list_who = []
    list_what = []
    list_when = []
    list_where = []
    list_why = []
    list_misc = []
    
    for item in qa_list:
        question = item[0]
        if any(x in question.lower() for x in ['who', 'what', 'when', 'where', 'why']):
            if 'who' in question.lower():
                list_who.append(item)
            elif 'what' in question.lower():
                list_what.append(item)
            elif 'when' in question.lower():
                list_when.append(item)
            elif 'where' in question.lower():
                list_where.append(item)
            elif 'why' in question.lower():
                list_why.append(item)
        else:
            list_misc.append(item)
    lists = [list_who, list_when, list_why, list_where, list_what]
    for j, lst in enumerate(lists):
        for i, l in enumerate(lst):
            if l:  # check if list is not empty
                l[0] = f"Q{i+1}: {l[0]}"
                l[1] = f"Claim:- {l[1]}"
                if l[2]:
                    l[2] = f"answer retrieved from evidence:- {l[2]}"
                else:
                    l[2] = f"answer retrieved from evidence:- No mention of '{['who', 'when', 'why', 'where', 'what'][j]}' in any related documents."
                    
    for i in range(len(lists)):
        if not lists[i]:
            lists[i].extend([["No claims", "", f"No mention of '{['who', 'when', 'why', 'where', 'what'][i]}' in any related documents.", "❔ Not verifiable"]])

    
    final_df = pd.DataFrame(columns=['Who Claims', 'What Claims', 'When Claims', 'Where Claims', 'Why Claims', 'Misc Claims'])
    
    all_items_who = [item for item_list in list_who for item in item_list]
    all_items_what = [item for item_list in list_what for item in item_list]
    all_items_when = [item for item_list in list_when for item in item_list]
    all_items_where = [item for item_list in list_where for item in item_list]
    all_items_why = [item for item_list in list_why for item in item_list]
    all_items_misc = [item for item_list in list_misc for item in item_list]
    
    
    max_rows = max(len(all_items_who), len(all_items_what), len(all_items_when), len(all_items_where), len(all_items_why), len(all_items_misc))
    
    final_df['Who Claims'] = all_items_who + [''] * (max_rows - len(all_items_who))
    final_df['What Claims'] = all_items_what + [''] * (max_rows - len(all_items_what))
    final_df['When Claims'] = all_items_when + [''] * (max_rows - len(all_items_when))
    final_df['Where Claims'] = all_items_where + [''] * (max_rows - len(all_items_where))
    final_df['Why Claims'] = all_items_why + [''] * (max_rows - len(all_items_why))  
    final_df['Misc Claims'] = all_items_misc + [''] * (max_rows - len(all_items_misc))  
    st.write(f"""Claim : {claim_text}""")
    st.write(f"""Evidence : {evidence_text}""")  
    st.table(final_df) 
else:
    st.warning("You need to input both the claim and evidence and then press Submit")