import streamlit as st
from transformers import pipeline
import re
import time
import requests
from PIL import Image
import itertools
st.set_page_config(page_title="FACTIFY - 5WQA", layout="wide")
HF_SPACES_API_KEY = st.secrets["HF_token"]
API_URL = "https://api-inference.huggingface.co/models/microsoft/prophetnet-large-uncased-squad-qg"
headers = {"Authorization": HF_SPACES_API_KEY}
def query(payload):
response = requests.post(API_URL, headers=headers, json=payload)
return response.json()
#-----------------------------------------------------------
API_URL_evidence = "https://api-inference.huggingface.co/models/google/flan-t5-xxl"
headers_evidence = {"Authorization": HF_SPACES_API_KEY}
# @st.cache(suppress_st_warning=True)
def query_evidence(payload):
response = requests.post(API_URL_evidence, headers=headers_evidence, json=payload)
return response.json()
#--------------------------------------------------------------------------------------------
def model_load_qg(answer,claim):
FACT_TO_GENERATE_QUESTION_FROM = f"""{answer} [SEP] {claim}"""
while True:
try:
question_ids = query({"inputs":FACT_TO_GENERATE_QUESTION_FROM,
"num_beams":5,
"early_stopping":True,
"min_length": 100,
"wait_for_model":True})[0]['generated_text'].capitalize()
break
except:
time.sleep(1)
return question_ids
def model_load_qa(question_ids,evidence):
# Wait until the model is loaded
while True:
try:
input_evidence = f"answer_the_next_question_from_context: {question_ids} context: {evidence}"
answer_evidence = query_evidence({"inputs":input_evidence,"truncation":True,"wait_for_model":True})[0]['generated_text']
break
except:
time.sleep(1)
return answer_evidence
#-----------------------------------------------------------
st.title('Welcome to :blue[FACTIFY - 5WQA] ')
# st.set_page_config(
# page_title="Welcome to :blue[FACTIFY - 5WQA]",
# layout="wide"
# )
# st.markdown("
5W Aspect-based Fact Verification through Question Answering :blue[Web Demo]", unsafe_allow_html=True)
#st.markdown("Ask a question about the collapse of the Silicon Valley Bank (SVB).", unsafe_allow_html=True)
st.header('5W Aspect-based Fact Verification through Question Answering :blue[Web Demo]')
image = Image.open('5W QA Illustration.jpg')
st.image(image, caption='5W QA Generation Pipeline')
st.subheader('Here are a few steps to begin exploring and interacting with this demo.')
st.caption('First you need to input your claim.')
st.caption('Then you need to input your evidence.')
st.caption('Upon completing these two steps, kindly wait for a minute to receive the results.')
st.caption('Start by inputting the following instance of a claim and corresponding evidence into the designated text fields.')
#-----------------------------------------------------------------------------------------------
st.caption('**Example 1**')
st.caption(''':green[Claim:] :point_right: Moderna's legal actions towards Pfizer-BioNTech indicate that the development of COVID-19 vaccines was underway prior to the commencement of the pandemic.''')
st.caption(''':green[Evidence:] :point_right: Moderna is suing Pfizer and BioNTech for patent infringement, alleging the rival companies used key parts of its mRNA technology to develop their COVID-19 vaccine. Moderna’s patents were filed between 2010 and 2016.
''')
# st.caption(''':green[Evidence:] :point_right: Due to the consumers increasingly relying on online retailers,
# Amazon planned to hire over 99,000 workers in the warehouse and delivery sector during the Pandemic in the USA.''')
#-----------------------------------------------------------------------------------------------
st.caption('**Example 2**')
st.caption(''':green[Claim:] :point_right: In China, Buddhist monks and nuns lived together in places such as the Yunnan monastery.''')
st.caption(''':green[Evidence:] :point_right: Monastics in Japan are particularly exceptional in the Buddhist tradition because the monks and nuns can marry after receiving their higher ordination . ''')
#-----------------------------------------------------------------------------------------------
st.caption('**Example 3**')
st.caption(''':green[Claim:] :point_right: In Batman, Penguin hydrates the henchmen with water contaminated with atomic waste.''')
st.caption(''':green[Evidence:] :point_right: And Penguin even schemes his way into the Batcave along with five dehydrated henchmen ;
this plan fails when the henchmen are unexpectedly killed
when he mistakenly rehydrates them with heavy water contaminated with atomic waste ,
regularly used to recharge the Batcave s atomic pile . ''')
#-----------------------------------------------------------
st.caption('**Example 4**')
st.caption(''':green[Claim:] :point_right: Amazon to hire 100K workers and until April Amazon will raise hourly wages by $2 due to pandemic demand.''')
st.caption(''':green[Evidence:] : Due to the consumers increasingly relying on online retailers, Amazon planned to hire over 99,000 workers in the warehouse and delivery sector during the Pandemic in the USA.''')
#-----------------------------------------------------------
def proc():
st.write(st.session_state.text_key)
# claim_text=st.text_area("Enter your claim:", on_change=proc, key='text_key')
# evidence_text=st.text_area("Enter your evidence:")
with st.form(key="claim_evidence_form",clear_on_submit=True):
claim_text = st.text_input("Enter claim:")
evidence_text = st.text_input("Enter evidence:")
submitted = st.form_submit_button("Submit")
# form_evidence = st.form(key='my_evidence')
# form_evidence.text_input(label='Enter your evidence')
# evidence_text = form_evidence.form_submit_button(label='Submit')
# if evidence_text:
#st.caption(':green[Kindly hold on for a few minutes while the QA pairs are being generated]')
#st.caption(':blue[At times, you may encounter null/none outputs, which could be a result of a delay in loading the models through the API. If you experience this problem, kindly try again after a few minutes.]')
import pandas as pd
from rouge_score import rouge_scorer
import numpy as np
from allennlp.predictors.predictor import Predictor
import allennlp_models.tagging
predictor = Predictor.from_path("structured-prediction-srl-bert.tar.gz")
#---------------------------------------------------------------
list_of_pronouns = ["I","i", "you", "he", "she", "it", "we", "they", "me", "him", "her", "us", "them",
"mine", "yours", "his", "hers", "its", "ours", "theirs",
"this", "that", "these", "those",
"myself", "yourself", "himself", "herself", "itself", "ourselves", "yourselves", "themselves",
"who", "whom", "what", "which", "whose",
"all", "another", "any", "anybody", "anyone", "anything", "both", "each", "either",
"everybody", "everyone", "everything", "few", "many", "neither", "nobody", "none", "nothing",
"one", "other", "several", "some", "somebody", "someone", "something"]
#---------------------------------------------------------------
# @st.cache
def srl(text):
import re
def remove_special_chars(text):
# Remove special characters that are not in between numbers
text = re.sub(r'(?".join(who)
# else:
# continue
#----------FOR COLUMN "WHAT"------------#
df['what'] = ''
for j in range(len(df['modified'])):
val_list = []
val_string = ''
for k,v in df['modified'][j].items():
val_list.append(v)
what = set() # use set to remove duplicates
for indx in range(len(val_list)):
val_string = val_list[indx]
pos = val_string.find("what: ")
substr = ''
if pos != -1:
for i in range(pos+5, len(val_string)):
if val_string[i] == "]":
break
else:
substr = substr + val_string[i]
substr = substr.strip() # remove leading/trailing white space
pronouns = list_of_pronouns
if substr.lower() not in pronouns and not substr.lower().endswith("'s"): # remove pronouns and possessive pronouns
what.add(substr)
else:
pass
df['what'][j] = "".join(what)
#----------FOR COLUMN "WHY"------------#
df['why'] = ''
for j in range(len(df['modified'])):
val_list = []
val_string = ''
for k,v in df['modified'][j].items():
val_list.append(v)
why = set() # use set to remove duplicates
for indx in range(len(val_list)):
val_string = val_list[indx]
pos = val_string.find("why: ")
substr = ''
if pos != -1:
for i in range(pos+5, len(val_string)):
if val_string[i] == "]":
break
else:
substr = substr + val_string[i]
substr = substr.strip() # remove leading/trailing white space
pronouns = list_of_pronouns
if substr.lower() not in pronouns and not substr.lower().endswith("'s"): # remove pronouns and possessive pronouns
why.add(substr)
else:
pass
df['why'][j] = "".join(why)
#----------FOR COLUMN "WHEN"------------#
df['when'] = ''
for j in range(len(df['modified'])):
val_list = []
val_string = ''
for k,v in df['modified'][j].items():
val_list.append(v)
when = set() # use set to remove duplicates
for indx in range(len(val_list)):
val_string = val_list[indx]
pos = val_string.find("when: ")
substr = ''
if pos != -1:
for i in range(pos+5, len(val_string)):
if val_string[i] == "]":
break
else:
substr = substr + val_string[i]
substr = substr.strip() # remove leading/trailing white space
pronouns = list_of_pronouns
if substr.lower() not in pronouns and not substr.lower().endswith("'s"): # remove pronouns and possessive pronouns
when.add(substr)
else:
pass
df['when'][j] = "".join(when)
#----------FOR COLUMN "WHERE"------------#
df['where'] = ''
for j in range(len(df['modified'])):
val_list = []
val_string = ''
for k,v in df['modified'][j].items():
val_list.append(v)
where = set() # use set to remove duplicates
for indx in range(len(val_list)):
val_string = val_list[indx]
pos = val_string.find("where: ")
substr = ''
if pos != -1:
for i in range(pos+5, len(val_string)):
if val_string[i] == "]":
break
else:
substr = substr + val_string[i]
substr = substr.strip() # remove leading/trailing white space
pronouns = list_of_pronouns
if substr.lower() not in pronouns and not substr.lower().endswith("'s"): # remove pronouns and possessive pronouns
where.add(substr)
else:
pass
df['where'][j] = "".join(where)
return who,what,when,where,why
#--------------------------------------------------------------------------
# @st.cache
def calc_rouge_l_score(list_of_evidence, list_of_ans):
scorer = rouge_scorer.RougeScorer(['rougeL'], use_stemmer=True)
scores = scorer.score(' '.join(list_of_evidence), ' '.join(list_of_ans))
return scores['rougeL'].fmeasure
#-------------------------------------------------------------------------
def qa_list_gen(claim,srl_list,evidence):
list_of_qa_pipeline=[]
for index,answer_claim in enumerate(srl_list):
question = model_load_qg(answer_claim,claim)
answer_evidence = model_load_qa(question,evidence)
if answer_evidence.lower() in evidence.lower():
pass
else:
answer_evidence=""
threshold = 0.2
list_of_pairs = [(answer_evidence, answer_claim)]
rouge_l_score = calc_rouge_l_score(answer_evidence, answer_claim)
if rouge_l_score >= threshold:
verification_status = '✅ Verified Valid'
elif rouge_l_score == 0:
verification_status = '❔ Not verifiable'
else:
verification_status = '❌ Verified False'
qa_pipeline=[question,answer_claim,answer_evidence,verification_status]
list_of_qa_pipeline.append(qa_pipeline)
return list_of_qa_pipeline
#-------------------------------------------------------------------------
# Handle form submission
if submitted and claim_text and evidence_text:
st.caption(':green[Kindly hold on for a few minutes while the QA pairs are being generated]')
srl_list = list(itertools.chain(*[list(s) for s in srl(claim_text)]))
qa_list=qa_list_gen(claim_text,srl_list,evidence_text)
list_who = []
list_what = []
list_when = []
list_where = []
list_why = []
list_misc = []
for item in qa_list:
question = item[0]
if any(x in question.lower() for x in ['who', 'what', 'when', 'where', 'why']):
if 'who' in question.lower():
list_who.append(item)
elif 'what' in question.lower():
list_what.append(item)
elif 'when' in question.lower():
list_when.append(item)
elif 'where' in question.lower():
list_where.append(item)
elif 'why' in question.lower():
list_why.append(item)
else:
list_misc.append(item)
lists = [list_who, list_when, list_why, list_where, list_what]
for j, lst in enumerate(lists):
for i, l in enumerate(lst):
if l: # check if list is not empty
l[0] = f"Q{i+1}: {l[0]}"
l[1] = f"Claim:- {l[1]}"
if l[2]:
l[2] = f"answer retrieved from evidence:- {l[2]}"
else:
l[2] = f"answer retrieved from evidence:- No mention of '{['who', 'when', 'why', 'where', 'what'][j]}' in any related documents."
for i in range(len(lists)):
if not lists[i]:
lists[i].extend([["No claims", "", f"No mention of '{['who', 'when', 'why', 'where', 'what'][i]}' in any related documents.", "❔ Not verifiable"]])
final_df = pd.DataFrame(columns=['Who Claims', 'What Claims', 'When Claims', 'Where Claims', 'Why Claims', 'Misc Claims'])
all_items_who = [item for item_list in list_who for item in item_list]
all_items_what = [item for item_list in list_what for item in item_list]
all_items_when = [item for item_list in list_when for item in item_list]
all_items_where = [item for item_list in list_where for item in item_list]
all_items_why = [item for item_list in list_why for item in item_list]
all_items_misc = [item for item_list in list_misc for item in item_list]
max_rows = max(len(all_items_who), len(all_items_what), len(all_items_when), len(all_items_where), len(all_items_why), len(all_items_misc))
final_df['Who Claims'] = all_items_who + [''] * (max_rows - len(all_items_who))
final_df['What Claims'] = all_items_what + [''] * (max_rows - len(all_items_what))
final_df['When Claims'] = all_items_when + [''] * (max_rows - len(all_items_when))
final_df['Where Claims'] = all_items_where + [''] * (max_rows - len(all_items_where))
final_df['Why Claims'] = all_items_why + [''] * (max_rows - len(all_items_why))
final_df['Misc Claims'] = all_items_misc + [''] * (max_rows - len(all_items_misc))
st.write(f"""Claim : {claim_text}""")
st.write(f"""Evidence : {evidence_text}""")
st.table(final_df)
else:
st.warning("You need to input both the claim and evidence and then press Submit")