Spaces:
Running
Running
File size: 4,065 Bytes
cabc588 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
import numpy as np
import pandas as pd
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout, BatchNormalization, GlobalAveragePooling2D
from tensorflow.keras.models import Model, load_model, Sequential
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.metrics import Precision, Recall
from tensorflow.keras.callbacks import EarlyStopping
from sklearn.utils.class_weight import compute_class_weight
from sklearn.model_selection import train_test_split
from tensorflow.keras.utils import to_categorical
import matplotlib.pyplot as plt
import warnings
import warnings
warnings.filterwarnings("ignore")
# print ('modules loaded')
import streamlit as st
import pandas as pd
import numpy as np
from PIL import Image
import tensorflow.keras as keras
st.title("Skin Cancer Classification App")
models = {
"Le_Net": load_model('LeNet_5.h5'),
"Simple_CNN": load_model('Simple CNN.h5'),
"Alex_Net": load_model('AlexNet.h5'),
"Deeper_CNN": load_model('Deeper CNN.h5')
}
# Allow user to select model
model_name = st.selectbox("Choose a model", list(models.keys()))
model = models[model_name]
# Upload CSV file
# file = st.file_uploader("Upload a CSV file", type=["csv"])
file ='hmnist_28_28_RGB.csv'
def image_resize(data):
Data = data.drop(columns=["label"])
Data = np.array(Data).reshape(-1, 28, 28, 3)
Data = Data / 255.0 # Normalizing the data
# Resize images to 32x32 pixels
Data_resized = resize(Data, [32, 32]).numpy() # Ensure conversion to NumPy array
return Data_resized
if file is not None:
df = pd.read_csv(file)
# Get first row
row = df.iloc[0]
# Load image
image = np.array(Image.open(row[0]))
# Reshape
img_reshaped = image_resize(row)
# Get prediction
pred = model.predict(img_reshaped)
label = np.argmax(pred)
label_map = {4: ('nv', ' melanocytic nevi'),
6: ('mel', 'melanoma'),
2: ('bkl', 'benign keratosis-like lesions'),
1: ('bcc' , ' basal cell carcinoma'),
5: ('vasc', 'pyogenic granulomas and hemorrhage'),
0: ('akiec', 'Actinic keratoses and intraepithelial carcinomae'),
3: ('df', 'dermatofibroma')}
if label in label_map:
label_name = label_map[label][0]
full_name = label_map[label][1]
# Display image and result
col1, col2 = st.columns(2)
with col1:
st.header("Input Image")
st.image(image)
with col2:
st.header("Prediction")
st.metric("Digit", full_name)
# import streamlit as st
# import predict_model # our prediction model
# # Label maps
# label_map = {0: ('akiec', 'Actinic keratoses'),
# 1: ('bcc', 'basal cell carcinoma'),
# # Rest of label map
# }
# # Get prediction
# img = st.file_uploader("Upload image")
# if img:
# pred_id = predict_model.get_prediction(img)
# # Display prediction
# if pred_id in label_map:
# label_name = label_map[pred_id][0]
# full_name = label_map[pred_id][1]
# st.success(f"Predicted Label: {label_name} - {full_name}")
# else:
# st.warning("Unknown label predicted")
# data_dir = 'hmnist_28_28_RGB.csv'
# data = pd.read_csv(data_dir)
# data.head()
# Label = data["label"]
# Data = data.drop(columns=["label"])
# data["label"].value_counts()
# classes = {4: ('nv', ' melanocytic nevi'),
# 6: ('mel', 'melanoma'),
# 2 :('bkl', 'benign keratosis-like lesions'),
# 1:('bcc' , ' basal cell carcinoma'),
# 5: ('vasc', ' pyogenic granulomas and hemorrhage'),
# 0: ('akiec', 'Actinic keratoses and intraepithelial carcinomae'),
# 3: ('df', 'dermatofibroma')}
# from tensorflow.image import resize
# #preprocess data
# Label = data["label"]
# Label = to_categorical(Label, num_classes=7) # Assuming 7 classes
# # Later in Streamlit...
|