Towhidul commited on
Commit
42c16c8
1 Parent(s): 068e46c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +26 -9
app.py CHANGED
@@ -46,6 +46,18 @@ model = models[model_name]
46
  file = st.file_uploader("Upload an image", type=["png", "jpg", "jpeg"])
47
  # file ='hmnist_28_28_RGB.csv'
48
 
 
 
 
 
 
 
 
 
 
 
 
 
49
  classes = {4: ('nv', ' melanocytic nevi'), 6: ('mel', 'melanoma'),
50
  2 :('bkl', 'benign keratosis-like lesions'), 1:('bcc' , ' basal cell carcinoma'),
51
  5: ('vasc', ' pyogenic granulomas and hemorrhage'),
@@ -53,17 +65,22 @@ classes = {4: ('nv', ' melanocytic nevi'), 6: ('mel', 'melanoma'),
53
  3: ('df', 'dermatofibroma')}
54
 
55
 
56
- if file is not None:
57
- temp_dir = tempfile.TemporaryDirectory()
58
- temp_file_path = temp_dir.name + "/" + file.name
 
 
 
 
 
59
 
60
- # Save the uploaded file to the temporary directory
61
- with open(temp_file_path, "wb") as f:
62
- f.write(file.read())
63
 
64
- img = cv2.imread(file)
65
  # cv2_imshow(img)
66
- img1 = cv2.resize(img, (28, 28))
67
  result = model.predict(img1.reshape(1, 28, 28, 3))
68
  max_prob = max(result[0])
69
  class_ind = list(result[0]).index(max_prob)
@@ -87,7 +104,7 @@ if file is not None:
87
  col1, col2 = st.columns(2)
88
  with col1:
89
  st.header("Input Image")
90
- st.image(img)
91
  with col2:
92
  st.header("Prediction")
93
  st.write(class_name)
 
46
  file = st.file_uploader("Upload an image", type=["png", "jpg", "jpeg"])
47
  # file ='hmnist_28_28_RGB.csv'
48
 
49
+
50
+
51
+ # uploaded_file = st.file_uploader("Choose a image file", type="jpg")
52
+
53
+ if uploaded_file is not None:
54
+ # Convert the file to an opencv image.
55
+ file_bytes = np.asarray(bytearray(uploaded_file.read()), dtype=np.uint8)
56
+ opencv_image = cv2.imdecode(file_bytes, 1)
57
+
58
+ st.image(opencv_image, channels="BGR")
59
+
60
+
61
  classes = {4: ('nv', ' melanocytic nevi'), 6: ('mel', 'melanoma'),
62
  2 :('bkl', 'benign keratosis-like lesions'), 1:('bcc' , ' basal cell carcinoma'),
63
  5: ('vasc', ' pyogenic granulomas and hemorrhage'),
 
65
  3: ('df', 'dermatofibroma')}
66
 
67
 
68
+ if file is not None:
69
+
70
+ file_bytes = np.asarray(bytearray(file.read()), dtype=np.uint8)
71
+ opencv_image = cv2.imdecode(file_bytes, 1)
72
+
73
+
74
+ # temp_dir = tempfile.TemporaryDirectory()
75
+ # temp_file_path = temp_dir.name + "/" + file.name
76
 
77
+ # # Save the uploaded file to the temporary directory
78
+ # with open(temp_file_path, "wb") as f:
79
+ # f.write(file.read())
80
 
81
+ # img = cv2.imread(file)
82
  # cv2_imshow(img)
83
+ img1 = cv2.resize(opencv_image, (28, 28))
84
  result = model.predict(img1.reshape(1, 28, 28, 3))
85
  max_prob = max(result[0])
86
  class_ind = list(result[0]).index(max_prob)
 
104
  col1, col2 = st.columns(2)
105
  with col1:
106
  st.header("Input Image")
107
+ st.image(opencv_image, channels="BGR")
108
  with col2:
109
  st.header("Prediction")
110
  st.write(class_name)