import gradio as gr from huggingface_hub import hf_hub_download import yolov9 class Inference_Nascent_Spawning_Deriving_From_YOLOv9: def __init__(self): self.model = None self.model_path = None self.image_size = None self.conf_threshold = None self.iou_threshold = None # Object behavior / Method -> 1 def download_models(self, model_id): hf_hub_download("merve/yolov9", filename=f"{model_id}", local_dir=f"./") return f"./{model_id}" # Object behavior / Method -> 2 def load_model(self, model_id): self.model_path = self.download_models(model_id) self.model = yolov9.load(self.model_path, device="cuda:0") # Object behavior / Method -> 3 def configure_model(self, conf_threshold, iou_threshold): self.conf_threshold = conf_threshold self.iou_threshold = iou_threshold self.model.conf = self.conf_threshold self.model.iou = self.iou_threshold # Object behavior / Method -> 4 def perform_inference(self, img_path, image_size): self.image_size = image_size results = self.model(img_path, size=self.image_size) output = results.render() return output[0] # Object behavior / Method -> 5 # Note: 5 is a method deriving from within the class with the name # Inference_Nascent_Spawning_Deriving_From_YOLOv9 # One can also declare outside of the OOP as a function, which in turn, # calls the methods inside of the OOP leveraging the functionality # fostering from each unique Object behavior / Method # Personal preferecnce -> This instantiation from within OOP def launch_gradio_app(self): with gr.Blocks() as gradio_app: with gr.Row(): with gr.Column(): img_path = gr.Image(type='filepath', label='Image') model_id = gr.Dropdown( label="Model", choices=[ "gelan-c.pt", "gelan-e.pt", "yolov9-c.pt", "yolov9-e.pt", ], value="gelan-e.pt", ) image_size = gr.Slider( label="Image Size", minimum=320, maximum=1280, step=32, value=640, # Default value of 640 foments higher percentage obverse the image detection ) conf_threshold = gr.Slider( label="Confidence Threshold", minimum=0.1, maximum=1.0, step=0.1, value=0.4, ) iou_threshold = gr.Slider( label="IoU Threshold", minimum=0.1, maximum=1.0, step=0.1, value=0.5, ) yolov9_infer = gr.Button(value="Inference") with gr.Column(): output_numpy = gr.Image(type="numpy", label="Output") # yolov9_infer leveraging click functionality # Resembles iface = gr.Interface( #fn=... #inputs=[], #outputs=[], yolov9_infer.click( fn=self.perform_inference, inputs=[ img_path, model_id, image_size, conf_threshold, iou_threshold, ], outputs=[output_numpy], ) gr.Examples( examples=[ ["cow.jpeg", "gelan-e.pt", 640, 0.4, 0.5], ["techengue_GTA.png", "yolov9-c.pt", 640, 0.4, 0.5], ], fn=self.perform_inference, inputs=[ img_path, model_id, image_size, conf_threshold, iou_threshold, ]. outputs=[output_numpy], cache_examples=True, ) gr.HTML( """

YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information

""" ) gr.HTML( """

Expound further notions regarding this topic at: https://doi.org/10.48550/arXiv.2402.13616 """) gradio_app.launch(debug=True) # Instantiate the class and launch the Gradio app yolo_inference = Inference_Nascent_Spawning_Deriving_From_YOLOv9() yolo_inference.launch_gradio_app()