Spaces:
Sleeping
Sleeping
EulerScheduler
Browse files
main.py
CHANGED
@@ -11,7 +11,7 @@ import json
|
|
11 |
import uuid
|
12 |
|
13 |
import torch
|
14 |
-
from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler
|
15 |
|
16 |
|
17 |
print(f"Is CUDA available: {torch.cuda.is_available()}")
|
@@ -21,41 +21,20 @@ app = FastAPI()
|
|
21 |
@app.get("/generate")
|
22 |
def generate_image(prompt, inference_steps, model):
|
23 |
torch.cuda.empty_cache()
|
24 |
-
|
25 |
print(f"Is CUDA available: {torch.cuda.is_available()}")
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
# Use the DPMSolverMultistepScheduler (DPM-Solver++) scheduler here instead
|
30 |
-
#pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
|
31 |
-
#pipe = StableDiffusionPipeline.from_pretrained(model_id)
|
32 |
|
33 |
-
#
|
34 |
-
|
35 |
|
36 |
-
pipeline = DiffusionPipeline.from_pretrained(str(model))
|
37 |
pipeline = pipeline.to("cuda")
|
38 |
-
#generator = torch.Generator("gpu").manual_seed(0)
|
39 |
-
pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config)
|
40 |
-
#image = pipeline(prompt, generator=generator).images[0]
|
41 |
image = pipeline(prompt, num_inference_steps=int(inference_steps)).images[0]
|
42 |
|
43 |
-
|
44 |
-
#prompt = "a photo of an astronaut riding a horse on mars"
|
45 |
-
|
46 |
-
#image = pipe(prompt, num_inference_steps=5).images[0]
|
47 |
-
#image = pipe(prompt).images[0]
|
48 |
-
|
49 |
-
|
50 |
filename = str(uuid.uuid4()) + ".jpg"
|
51 |
-
|
52 |
-
#print(f"after filename assignment")
|
53 |
-
|
54 |
image.save(filename)
|
55 |
|
56 |
print(filename)
|
57 |
-
#print(f"after save")
|
58 |
-
|
59 |
|
60 |
# Data to be written
|
61 |
assertion = {
|
|
|
11 |
import uuid
|
12 |
|
13 |
import torch
|
14 |
+
from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler, EulerDiscreteScheduler
|
15 |
|
16 |
|
17 |
print(f"Is CUDA available: {torch.cuda.is_available()}")
|
|
|
21 |
@app.get("/generate")
|
22 |
def generate_image(prompt, inference_steps, model):
|
23 |
torch.cuda.empty_cache()
|
|
|
24 |
print(f"Is CUDA available: {torch.cuda.is_available()}")
|
25 |
|
26 |
+
pipeline = DiffusionPipeline.from_pretrained(str(model))
|
|
|
|
|
|
|
|
|
27 |
|
28 |
+
#pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config)
|
29 |
+
pipeline.scheduler = EulerDiscreteScheduler.from_config(pipeline.scheduler.config)
|
30 |
|
|
|
31 |
pipeline = pipeline.to("cuda")
|
|
|
|
|
|
|
32 |
image = pipeline(prompt, num_inference_steps=int(inference_steps)).images[0]
|
33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
filename = str(uuid.uuid4()) + ".jpg"
|
|
|
|
|
|
|
35 |
image.save(filename)
|
36 |
|
37 |
print(filename)
|
|
|
|
|
38 |
|
39 |
# Data to be written
|
40 |
assertion = {
|