Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -6,15 +6,16 @@ from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStream
|
|
6 |
import gradio as gr
|
7 |
from threading import Thread
|
8 |
|
9 |
-
MODEL_LIST = ["meta-llama/Meta-Llama-3.1-8B-Instruct"]
|
10 |
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
11 |
MODEL = os.environ.get("MODEL_ID")
|
12 |
|
13 |
-
TITLE = "<h1><center>Meta-Llama3.1-
|
14 |
|
15 |
PLACEHOLDER = """
|
16 |
<center>
|
17 |
-
<p
|
|
|
18 |
</center>
|
19 |
"""
|
20 |
|
@@ -33,16 +34,26 @@ h3 {
|
|
33 |
|
34 |
device = "cuda" # for GPU usage or "cpu" for CPU usage
|
35 |
|
36 |
-
quantization_config = BitsAndBytesConfig(
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
41 |
torch_dtype=torch.bfloat16,
|
42 |
device_map="auto",
|
43 |
quantization_config=quantization_config)
|
44 |
|
45 |
-
@spaces.GPU()
|
46 |
def stream_chat(
|
47 |
message: str,
|
48 |
history: list,
|
@@ -52,6 +63,7 @@ def stream_chat(
|
|
52 |
top_p: float = 1.0,
|
53 |
top_k: int = 20,
|
54 |
penalty: float = 1.2,
|
|
|
55 |
):
|
56 |
print(f'message: {message}')
|
57 |
print(f'history: {history}')
|
@@ -67,6 +79,11 @@ def stream_chat(
|
|
67 |
|
68 |
conversation.append({"role": "user", "content": message})
|
69 |
|
|
|
|
|
|
|
|
|
|
|
70 |
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt").to(model.device)
|
71 |
|
72 |
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
|
@@ -101,7 +118,7 @@ with gr.Blocks(css=CSS, theme="soft") as demo:
|
|
101 |
fn=stream_chat,
|
102 |
chatbot=chatbot,
|
103 |
fill_height=True,
|
104 |
-
additional_inputs_accordion=gr.Accordion(label="⚙️
|
105 |
additional_inputs=[
|
106 |
gr.Textbox(
|
107 |
value="You are a helpful assistant",
|
@@ -148,6 +165,12 @@ with gr.Blocks(css=CSS, theme="soft") as demo:
|
|
148 |
label="Repetition penalty",
|
149 |
render=False,
|
150 |
),
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
],
|
152 |
examples=[
|
153 |
["Help me study vocabulary: write a sentence for me to fill in the blank, and I'll try to pick the correct option."],
|
|
|
6 |
import gradio as gr
|
7 |
from threading import Thread
|
8 |
|
9 |
+
MODEL_LIST = ["meta-llama/Meta-Llama-3.1-8B-Instruct", "meta-llama/Meta-Llama-3.1-70B-Instruct"]
|
10 |
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
11 |
MODEL = os.environ.get("MODEL_ID")
|
12 |
|
13 |
+
TITLE = "<h1><center>Meta-Llama3.1-Chat</center></h1>"
|
14 |
|
15 |
PLACEHOLDER = """
|
16 |
<center>
|
17 |
+
<p>😊Hi! How can I help you today?</p><br>
|
18 |
+
<p>✨Select Meta-Llama3.1-8B/70B in Advanced Options</p>
|
19 |
</center>
|
20 |
"""
|
21 |
|
|
|
34 |
|
35 |
device = "cuda" # for GPU usage or "cpu" for CPU usage
|
36 |
|
37 |
+
quantization_config = BitsAndBytesConfig(
|
38 |
+
load_in_4bit=True,
|
39 |
+
bnb_4bit_compute_dtype=torch.bfloat16,
|
40 |
+
bnb_4bit_use_double_quant=True,
|
41 |
+
bnb_4bit_quant_type= "nf4")
|
42 |
+
|
43 |
|
44 |
tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
45 |
+
model_8b = AutoModelForCausalLM.from_pretrained(
|
46 |
+
MODEL_LIST[0],
|
47 |
+
torch_dtype=torch.bfloat16,
|
48 |
+
device_map="auto",
|
49 |
+
quantization_config=quantization_config)
|
50 |
+
model_70b = AutoModelForCausalLM.from_pretrained(
|
51 |
+
MODEL_LIST[1],
|
52 |
torch_dtype=torch.bfloat16,
|
53 |
device_map="auto",
|
54 |
quantization_config=quantization_config)
|
55 |
|
56 |
+
@spaces.GPU(duration=120)
|
57 |
def stream_chat(
|
58 |
message: str,
|
59 |
history: list,
|
|
|
63 |
top_p: float = 1.0,
|
64 |
top_k: int = 20,
|
65 |
penalty: float = 1.2,
|
66 |
+
choice: str = "Meta-Llama-3.1-8B"
|
67 |
):
|
68 |
print(f'message: {message}')
|
69 |
print(f'history: {history}')
|
|
|
79 |
|
80 |
conversation.append({"role": "user", "content": message})
|
81 |
|
82 |
+
if choice == "Meta-Llama-3.1-8B":
|
83 |
+
model = model_8b
|
84 |
+
else:
|
85 |
+
model = model_70b
|
86 |
+
|
87 |
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt").to(model.device)
|
88 |
|
89 |
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
|
|
|
118 |
fn=stream_chat,
|
119 |
chatbot=chatbot,
|
120 |
fill_height=True,
|
121 |
+
additional_inputs_accordion=gr.Accordion(label="⚙️ Advanced Options", open=False, render=False),
|
122 |
additional_inputs=[
|
123 |
gr.Textbox(
|
124 |
value="You are a helpful assistant",
|
|
|
165 |
label="Repetition penalty",
|
166 |
render=False,
|
167 |
),
|
168 |
+
gr.Radio(
|
169 |
+
["Meta-Llama-3.1-8B", "Meta-Llama-3.1-70B"],
|
170 |
+
value="Meta-Llama-3.1-8B",
|
171 |
+
label="Load Model",
|
172 |
+
render=False,
|
173 |
+
),
|
174 |
],
|
175 |
examples=[
|
176 |
["Help me study vocabulary: write a sentence for me to fill in the blank, and I'll try to pick the correct option."],
|