import os from openai import OpenAI import gradio as gr api_key = os.environ.get("OPENAI_API_KEY") base_url = os.environ.get("OPENAI_BASE_URL") client = OpenAI(api_key=api_key, base_url=base_url) def predict(message, history): history_openai_format = [] for human, assistant in history: history_openai_format.append({"role": "user", "content": human }) history_openai_format.append({"role": "assistant", "content":assistant}) history_openai_format.append({"role": "user", "content": message}) response = client.chat.completions.create(model='Llama-3-8B-UltraMedical', messages= history_openai_format, temperature=1.0, stop=["<|eot_id|>"], stream=True) partial_message = "" for chunk in response: if chunk.choices[0].delta.content is not None: partial_message = partial_message + chunk.choices[0].delta.content yield partial_message gr.ChatInterface(predict).launch()