TulipAIs's picture
Upload folder using huggingface_hub
acc615e
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import math
import typing as tp
import torch
from .base import BaseQuantizer, QuantizedResult
from .core_vq import ResidualVectorQuantization
class ResidualVectorQuantizer(BaseQuantizer):
"""Residual Vector Quantizer.
Args:
dimension (int): Dimension of the codebooks.
n_q (int): Number of residual vector quantizers used.
q_dropout (bool): Random quantizer drop out at train time.
bins (int): Codebook size.
decay (float): Decay for exponential moving average over the codebooks.
kmeans_init (bool): Whether to use kmeans to initialize the codebooks.
kmeans_iters (int): Number of iterations used for kmeans initialization.
threshold_ema_dead_code (int): Threshold for dead code expiration. Replace any codes
that have an exponential moving average cluster size less than the specified threshold with
randomly selected vector from the current batch.
orthogonal_reg_weight (float): Orthogonal regularization weights.
orthogonal_reg_active_codes_only (bool): Apply orthogonal regularization only on active codes.
orthogonal_reg_max_codes (optional int): Maximum number of codes to consider.
for orthogonal regularization.
"""
def __init__(
self,
dimension: int = 256,
n_q: int = 8,
q_dropout: bool = False,
bins: int = 1024,
decay: float = 0.99,
kmeans_init: bool = True,
kmeans_iters: int = 10,
threshold_ema_dead_code: int = 2,
orthogonal_reg_weight: float = 0.0,
orthogonal_reg_active_codes_only: bool = False,
orthogonal_reg_max_codes: tp.Optional[int] = None,
):
super().__init__()
self.max_n_q = n_q
self.n_q = n_q
self.q_dropout = q_dropout
self.dimension = dimension
self.bins = bins
self.decay = decay
self.kmeans_init = kmeans_init
self.kmeans_iters = kmeans_iters
self.threshold_ema_dead_code = threshold_ema_dead_code
self.orthogonal_reg_weight = orthogonal_reg_weight
self.orthogonal_reg_active_codes_only = orthogonal_reg_active_codes_only
self.orthogonal_reg_max_codes = orthogonal_reg_max_codes
self.vq = ResidualVectorQuantization(
dim=self.dimension,
codebook_size=self.bins,
num_quantizers=self.n_q,
decay=self.decay,
kmeans_init=self.kmeans_init,
kmeans_iters=self.kmeans_iters,
threshold_ema_dead_code=self.threshold_ema_dead_code,
orthogonal_reg_weight=self.orthogonal_reg_weight,
orthogonal_reg_active_codes_only=self.orthogonal_reg_active_codes_only,
orthogonal_reg_max_codes=self.orthogonal_reg_max_codes,
channels_last=False
)
def forward(self, x: torch.Tensor, frame_rate: int):
n_q = self.n_q
if self.training and self.q_dropout:
n_q = int(torch.randint(1, self.n_q + 1, (1,)).item())
bw_per_q = math.log2(self.bins) * frame_rate / 1000
quantized, codes, commit_loss = self.vq(x, n_q=n_q)
codes = codes.transpose(0, 1)
# codes is [B, K, T], with T frames, K nb of codebooks.
bw = torch.tensor(n_q * bw_per_q).to(x)
return QuantizedResult(quantized, codes, bw, penalty=torch.mean(commit_loss))
def encode(self, x: torch.Tensor) -> torch.Tensor:
"""Encode a given input tensor with the specified frame rate at the given bandwidth.
The RVQ encode method sets the appropriate number of quantizer to use
and returns indices for each quantizer.
"""
n_q = self.n_q
codes = self.vq.encode(x, n_q=n_q)
codes = codes.transpose(0, 1)
# codes is [B, K, T], with T frames, K nb of codebooks.
return codes
def decode(self, codes: torch.Tensor) -> torch.Tensor:
"""Decode the given codes to the quantized representation."""
# codes is [B, K, T], with T frames, K nb of codebooks, vq.decode expects [K, B, T].
codes = codes.transpose(0, 1)
quantized = self.vq.decode(codes)
return quantized
@property
def total_codebooks(self):
return self.max_n_q
@property
def num_codebooks(self):
return self.n_q
def set_num_codebooks(self, n: int):
assert n > 0 and n <= self.max_n_q
self.n_q = n