|
|
|
|
|
from __future__ import annotations |
|
|
|
import os |
|
|
|
import gradio as gr |
|
|
|
from constants import MODEL_LIBRARY_ORG_NAME, UploadTarget |
|
from uploader import upload |
|
from utils import find_exp_dirs |
|
|
|
|
|
def load_local_model_list() -> dict: |
|
choices = find_exp_dirs() |
|
return gr.update(choices=choices, value=choices[0] if choices else None) |
|
|
|
|
|
def create_upload_demo(disable_run_button: bool = False) -> gr.Blocks: |
|
model_dirs = find_exp_dirs() |
|
|
|
with gr.Blocks() as demo: |
|
with gr.Box(): |
|
gr.Markdown('Local Models') |
|
reload_button = gr.Button('Reload Model List') |
|
model_dir = gr.Dropdown( |
|
label='Model names', |
|
choices=model_dirs, |
|
value=model_dirs[0] if model_dirs else None) |
|
with gr.Box(): |
|
gr.Markdown('Upload Settings') |
|
with gr.Row(): |
|
use_private_repo = gr.Checkbox(label='Private', value=True) |
|
delete_existing_repo = gr.Checkbox( |
|
label='Delete existing repo of the same name', value=False) |
|
upload_to = gr.Radio(label='Upload to', |
|
choices=[_.value for _ in UploadTarget], |
|
value=UploadTarget.MODEL_LIBRARY.value) |
|
model_name = gr.Textbox(label='Model Name') |
|
hf_token = gr.Text(label='Hugging Face Write Token', |
|
type='password', |
|
visible=os.getenv('HF_TOKEN') is None) |
|
upload_button = gr.Button('Upload', interactive=not disable_run_button) |
|
gr.Markdown(f''' |
|
- You can upload your trained model to your personal profile (i.e. `https://huggingface.co/{{your_username}}/{{model_name}}`) or to the public [Tune-A-Video Library](https://huggingface.co/{MODEL_LIBRARY_ORG_NAME}) (i.e. `https://huggingface.co/{MODEL_LIBRARY_ORG_NAME}/{{model_name}}`). |
|
''') |
|
with gr.Box(): |
|
gr.Markdown('Output message') |
|
output_message = gr.Markdown() |
|
|
|
reload_button.click(fn=load_local_model_list, |
|
inputs=None, |
|
outputs=model_dir) |
|
upload_button.click(fn=upload, |
|
inputs=[ |
|
model_dir, |
|
model_name, |
|
upload_to, |
|
use_private_repo, |
|
delete_existing_repo, |
|
hf_token, |
|
], |
|
outputs=output_message) |
|
return demo |
|
|
|
|
|
if __name__ == '__main__': |
|
demo = create_upload_demo() |
|
demo.queue(api_open=False, max_size=1).launch() |
|
|