Tune-A-Video-Training-UI / app_inference.py
hysts's picture
hysts HF staff
Migrate from yapf to black
ecfdc8b
#!/usr/bin/env python
from __future__ import annotations
import enum
import gradio as gr
from huggingface_hub import HfApi
from constants import MODEL_LIBRARY_ORG_NAME, UploadTarget
from inference import InferencePipeline
from utils import find_exp_dirs
class ModelSource(enum.Enum):
HUB_LIB = UploadTarget.MODEL_LIBRARY.value
LOCAL = "Local"
class InferenceUtil:
def __init__(self, hf_token: str | None):
self.hf_token = hf_token
def load_hub_model_list(self) -> dict:
api = HfApi(token=self.hf_token)
choices = [info.modelId for info in api.list_models(author=MODEL_LIBRARY_ORG_NAME)]
return gr.update(choices=choices, value=choices[0] if choices else None)
@staticmethod
def load_local_model_list() -> dict:
choices = find_exp_dirs()
return gr.update(choices=choices, value=choices[0] if choices else None)
def reload_model_list(self, model_source: str) -> dict:
if model_source == ModelSource.HUB_LIB.value:
return self.load_hub_model_list()
elif model_source == ModelSource.LOCAL.value:
return self.load_local_model_list()
else:
raise ValueError
def load_model_info(self, model_id: str) -> tuple[str, str]:
try:
card = InferencePipeline.get_model_card(model_id, self.hf_token)
except Exception:
return "", ""
base_model = getattr(card.data, "base_model", "")
training_prompt = getattr(card.data, "training_prompt", "")
return base_model, training_prompt
def reload_model_list_and_update_model_info(self, model_source: str) -> tuple[dict, str, str]:
model_list_update = self.reload_model_list(model_source)
model_list = model_list_update["choices"]
model_info = self.load_model_info(model_list[0] if model_list else "")
return model_list_update, *model_info
def create_inference_demo(
pipe: InferencePipeline, hf_token: str | None = None, disable_run_button: bool = False
) -> gr.Blocks:
app = InferenceUtil(hf_token)
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
with gr.Box():
model_source = gr.Radio(
label="Model Source", choices=[_.value for _ in ModelSource], value=ModelSource.HUB_LIB.value
)
reload_button = gr.Button("Reload Model List")
model_id = gr.Dropdown(label="Model ID", choices=None, value=None)
with gr.Accordion(label="Model info (Base model and prompt used for training)", open=False):
with gr.Row():
base_model_used_for_training = gr.Text(label="Base model", interactive=False)
prompt_used_for_training = gr.Text(label="Training prompt", interactive=False)
prompt = gr.Textbox(label="Prompt", max_lines=1, placeholder='Example: "A panda is surfing"')
video_length = gr.Slider(label="Video length", minimum=4, maximum=12, step=1, value=8)
fps = gr.Slider(label="FPS", minimum=1, maximum=12, step=1, value=1)
seed = gr.Slider(label="Seed", minimum=0, maximum=100000, step=1, value=0)
with gr.Accordion("Advanced options", open=False):
num_steps = gr.Slider(label="Number of Steps", minimum=0, maximum=100, step=1, value=50)
guidance_scale = gr.Slider(label="Guidance scale", minimum=0, maximum=50, step=0.1, value=7.5)
run_button = gr.Button("Generate", interactive=not disable_run_button)
gr.Markdown(
"""
- After training, you can press "Reload Model List" button to load your trained model names.
- It takes a few minutes to download model first.
- Expected time to generate an 8-frame video: 70 seconds with T4, 24 seconds with A10G, (10 seconds with A100)
"""
)
with gr.Column():
result = gr.Video(label="Result")
model_source.change(
fn=app.reload_model_list_and_update_model_info,
inputs=model_source,
outputs=[
model_id,
base_model_used_for_training,
prompt_used_for_training,
],
)
reload_button.click(
fn=app.reload_model_list_and_update_model_info,
inputs=model_source,
outputs=[
model_id,
base_model_used_for_training,
prompt_used_for_training,
],
)
model_id.change(
fn=app.load_model_info,
inputs=model_id,
outputs=[
base_model_used_for_training,
prompt_used_for_training,
],
)
inputs = [
model_id,
prompt,
video_length,
fps,
seed,
num_steps,
guidance_scale,
]
prompt.submit(fn=pipe.run, inputs=inputs, outputs=result)
run_button.click(fn=pipe.run, inputs=inputs, outputs=result)
return demo
if __name__ == "__main__":
import os
hf_token = os.getenv("HF_TOKEN")
pipe = InferencePipeline(hf_token)
demo = create_inference_demo(pipe, hf_token)
demo.queue(api_open=False, max_size=10).launch()