File size: 9,947 Bytes
3cb8cd6 bc7a8d3 3cb8cd6 74de75a 3cb8cd6 575f7ee 3cb8cd6 74de75a 3cb8cd6 bc7a8d3 3cb8cd6 bc7a8d3 3cb8cd6 bc7a8d3 3cb8cd6 575f7ee 3cb8cd6 bc7a8d3 575f7ee 3cb8cd6 74de75a 3cb8cd6 575f7ee 3cb8cd6 74de75a 3cb8cd6 575f7ee 3cb8cd6 74de75a 575f7ee 74de75a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
import os
import spaces
import gradio as gr
import numpy as np
import tensorflow as tf
from keras.applications.mobilenet_v2 import MobileNetV2, preprocess_input
from keras.models import Model
import matplotlib.pyplot as plt
import logging
from skimage.transform import resize
from PIL import Image, ImageEnhance, ImageFilter
from tqdm import tqdm
# Disable GPU usage by default
os.environ['CUDA_VISIBLE_DEVICES'] = ''
class SwarmAgent:
def __init__(self, position, velocity):
self.position = position
self.velocity = velocity
self.m = np.zeros_like(position)
self.v = np.zeros_like(position)
class SwarmNeuralNetwork:
def __init__(self, num_agents, image_shape, target_image_path):
self.image_shape = image_shape
self.resized_shape = (128, 128, 3) # Reduced resolution
self.agents = [SwarmAgent(self.random_position(), self.random_velocity()) for _ in range(num_agents)]
self.target_image = self.load_target_image(target_image_path)
self.generated_image = np.random.randn(*image_shape) # Start with noise
self.mobilenet = self.load_mobilenet_model()
self.current_epoch = 0
self.noise_schedule = np.linspace(0.1, 0.002, 1000) # Noise schedule
def random_position(self):
return np.random.randn(*self.image_shape) # Use Gaussian noise
def random_velocity(self):
return np.random.randn(*self.image_shape) * 0.01
def load_target_image(self, img_path):
img = Image.open(img_path)
img = img.resize((self.image_shape[1], self.image_shape[0]))
img_array = np.array(img) / 127.5 - 1 # Normalize to [-1, 1]
plt.imshow((img_array + 1) / 2) # Convert back to [0, 1] for display
plt.title('Target Image')
plt.show()
return img_array
def resize_image(self, image):
return resize(image, self.resized_shape, anti_aliasing=True)
def load_mobilenet_model(self):
mobilenet = MobileNetV2(weights='imagenet', include_top=False, input_shape=self.resized_shape)
return Model(inputs=mobilenet.input, outputs=mobilenet.get_layer('block_13_expand_relu').output)
def add_positional_encoding(self, image):
h, w, c = image.shape
pos_enc = np.zeros_like(image)
for i in range(h):
for j in range(w):
pos_enc[i, j, :] = [i/h, j/w, 0]
return image + pos_enc
def multi_head_attention(self, agent, num_heads=4):
attention_scores = []
for _ in range(num_heads):
similarity = np.exp(-np.sum((agent.position - self.target_image)**2, axis=-1))
attention_score = similarity / np.sum(similarity)
attention_scores.append(attention_score)
attention = np.mean(attention_scores, axis=0)
return np.expand_dims(attention, axis=-1)
def multi_scale_perceptual_loss(self, agent_positions):
target_image_resized = self.resize_image((self.target_image + 1) / 2) # Convert to [0, 1] for MobileNet
target_image_preprocessed = preprocess_input(target_image_resized[np.newaxis, ...] * 255) # MobileNet expects [0, 255]
target_features = self.mobilenet.predict(target_image_preprocessed)
losses = []
for agent_position in agent_positions:
agent_image_resized = self.resize_image((agent_position + 1) / 2)
agent_image_preprocessed = preprocess_input(agent_image_resized[np.newaxis, ...] * 255)
agent_features = self.mobilenet.predict(agent_image_preprocessed)
loss = np.mean((target_features - agent_features)**2)
losses.append(1 / (1 + loss))
return np.array(losses)
@spaces.GPU(duration=120)
def update_agents(self, timestep):
noise_level = self.noise_schedule[min(timestep, len(self.noise_schedule) - 1)]
for agent in self.agents:
# Predict noise
predicted_noise = agent.position - self.target_image
# Denoise
denoised = (agent.position - noise_level * predicted_noise) / (1 - noise_level)
# Add scaled noise for next step
agent.position = denoised + np.random.randn(*self.image_shape) * np.sqrt(noise_level)
# Clip values
agent.position = np.clip(agent.position, -1, 1)
@spaces.GPU(duration=120)
def generate_image(self):
self.generated_image = np.mean([agent.position for agent in self.agents], axis=0)
# Normalize to [0, 1] range for display
self.generated_image = (self.generated_image + 1) / 2
self.generated_image = np.clip(self.generated_image, 0, 1)
# Apply sharpening filter
image_pil = Image.fromarray((self.generated_image * 255).astype(np.uint8))
image_pil = image_pil.filter(ImageFilter.SHARPEN)
self.generated_image = np.array(image_pil) / 255.0
@spaces.GPU(duration=120)
def train(self, epochs):
logging.basicConfig(filename='training.log', level=logging.INFO)
for epoch in tqdm(range(epochs), desc="Training Epochs"):
self.update_agents(epoch)
self.generate_image()
mse = np.mean(((self.generated_image * 2 - 1) - self.target_image)**2)
logging.info(f"Epoch {epoch}, MSE: {mse}")
if epoch % 2 == 0: # Display more frequently for faster feedback
print(f"Epoch {epoch}, MSE: {mse}")
self.display_image(self.generated_image, title=f'Epoch {epoch}')
self.current_epoch += 1
def display_image(self, image, title=''):
plt.imshow(image)
plt.title(title)
plt.axis('off')
plt.show()
def display_agent_positions(self, epoch):
fig, ax = plt.subplots()
positions = np.array([agent.position for agent in self.agents])
ax.imshow(self.generated_image, extent=[0, self.image_shape[1], 0, self.image_shape[0]])
ax.scatter(positions[:, :, 0].flatten(), positions[:, :, 1].flatten(), s=1, c='red')
plt.title(f'Agent Positions at Epoch {epoch}')
plt.show()
def save_model(self, filename):
model_state = {
'agents': self.agents,
'generated_image': self.generated_image,
'current_epoch': self.current_epoch
}
np.save(filename, model_state)
def load_model(self, filename):
model_state = np.load(filename, allow_pickle=True).item()
self.agents = model_state['agents']
self.generated_image = model_state['generated_image']
self.current_epoch = model_state['current_epoch']
@spaces.GPU(duration=120)
def generate_new_image(self, num_steps=200): # Reduced number of steps
for agent in self.agents:
agent.position = np.random.randn(*self.image_shape)
for step in tqdm(range(num_steps), desc="Generating Image"):
self.update_agents(num_steps - step - 1) # Reverse order
self.generate_image()
return self.generated_image
def adjust_limbs(self, arm_position, leg_position):
# Logic to adjust arm and leg positions in the target image
# For simplicity, let's assume arm_position and leg_position range from -100 to 100
arm_shift = arm_position / 100.0 * 0.2 # Scale to a reasonable range
leg_shift = leg_position / 100.0 * 0.2 # Scale to a reasonable range
# Translate the positions of the arms and legs in the image
for agent in self.agents:
agent.position[50:100, 50:200, :] += arm_shift # Example adjustment
agent.position[150:200, 50:200, :] += leg_shift # Example adjustment
# Gradio Interface
def train_snn(image_path, num_agents, epochs, arm_position, leg_position, brightness, contrast, color):
snn = SwarmNeuralNetwork(num_agents=num_agents, image_shape=(128, 128, 3), target_image_path=image_path) # Reduced resolution
# Apply user-specified adjustments to the target image
image = Image.open(image_path)
image = ImageEnhance.Brightness(image).enhance(brightness)
image = ImageEnhance.Contrast(image).enhance(contrast)
image = ImageEnhance.Color(image).enhance(color)
snn.target_image = snn.load_target_image(image_path)
# Adjust limb positions based on slider values
snn.adjust_limbs(arm_position, leg_position)
snn.train(epochs=epochs)
snn.save_model('snn_model.npy')
generated_image = snn.generated_image
return generated_image
def generate_new_image():
snn = SwarmNeuralNetwork(num_agents=1000, image_shape=(128, 128, 3), target_image_path=None) # Reduced number of agents
snn.load_model('snn_model.npy')
new_image = snn.generate_new_image()
return new_image
interface = gr.Interface(
fn=train_snn,
inputs=[
gr.Image(type="filepath", label="Upload Target Image"),
gr.Slider(minimum=100, maximum=1000, value=500, label="Number of Agents"), # Further reduced range for number of agents
gr.Slider(minimum=5, maximum=20, value=10, label="Number of Epochs"), # Further reduced range for number of epochs
gr.Slider(minimum=-100, maximum=100, value=0, label="Arm Position"),
gr.Slider(minimum=-100, maximum=100, value=0, label="Leg Position"),
gr.Slider(minimum=0.5, maximum=2.0, value=1.0, label="Brightness"),
gr.Slider(minimum=0.5, maximum=2.0, value=1.0, label="Contrast"),
gr.Slider(minimum=0.5, maximum=2.0, value=1.0, label="Color Balance")
],
outputs=gr.Image(type="numpy", label="Generated Image"),
title="Swarm Neural Network Image Generation",
description="Upload an image and set the number of agents and epochs to train the Swarm Neural Network to generate a new image. Adjust arm and leg positions, brightness, contrast, and color balance for personalization."
)
interface.launch() |