test-gpt-omni / app.py
TuringsSolutions's picture
Update app.py
5e0126f verified
import time
from threading import Thread
import gradio as gr
import torch
from PIL import Image
from transformers import AutoProcessor, LlavaForConditionalGeneration, TextIteratorStreamer
# Model Configuration
model_id = "xtuner/llava-llama-3-8b-v1_1-transformers"
print("Loading model...")
processor = AutoProcessor.from_pretrained(model_id)
# Adjusted model loading to use Accelerate's `device_map`
model = LlavaForConditionalGeneration.from_pretrained(
model_id,
torch_dtype=torch.float16,
device_map="auto" # Uses the Accelerate library for efficient memory usage
)
print("Model loaded successfully!")
PLACEHOLDER = """
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
<img src="https://cdn-uploads.huggingface.co/production/uploads/64ccdc322e592905f922a06e/DDIW0kbWmdOQWwy4XMhwX.png"
style="width: 80%; max-width: 550px; height: auto; opacity: 0.55;">
<h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">LLaVA-Llama-3-8B</h1>
<p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">
Llava-Llama-3-8B is fine-tuned from Meta-Llama-3-8B-Instruct and CLIP-ViT-Large-patch14-336
using ShareGPT4V-PT and InternVL-SFT by XTuner.
</p>
</div>
"""
def bot_streaming(message, history):
"""Handles message processing with image and text streaming."""
try:
image = None
# Extract image from message or history
if message["files"]:
image = message["files"][-1]["path"] if isinstance(message["files"][-1], dict) else message["files"][-1]
else:
for hist in history:
if isinstance(hist[0], tuple):
image = hist[0][0]
if not image:
return "Error: Please upload an image for LLaVA to work."
# Prepare inputs
image = Image.open(image)
prompt = f"<|start_header_id|>user<|end_header_id|>\n\n<image>\n{message['text']}<|eot_id|>"
inputs = processor(prompt, image, return_tensors="pt").to(model.device, dtype=torch.float16)
# Stream text generation
streamer = TextIteratorStreamer(processor, skip_special_tokens=True, skip_prompt=True)
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024, do_sample=False)
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
time.sleep(0.5) # Allow some time for initial generation
# Stream the generated response
for new_text in streamer:
if "<|eot_id|>" in new_text:
new_text = new_text.split("<|eot_id|>")[0]
buffer += new_text
yield buffer
except Exception as e:
yield f"Error: {str(e)}"
# Define Gradio interface components
chatbot = gr.Chatbot(placeholder=PLACEHOLDER, scale=1)
chat_input = gr.MultimodalTextbox(
interactive=True, file_types=["image"], placeholder="Enter message or upload a file...", show_label=False
)
with gr.Blocks(fill_height=True) as demo:
gr.ChatInterface(
fn=bot_streaming,
title="LLaVA Llama-3-8B",
examples=[
{"text": "What is on the flower?", "files": ["./bee.jpg"]},
{"text": "How to make this pastry?", "files": ["./baklava.png"]}
],
description=(
"Try [LLaVA Llama-3-8B](https://huggingface.co/xtuner/llava-llama-3-8b-v1_1-transformers). "
"Upload an image and start chatting about it, or simply try one of the examples below. "
"If you don't upload an image, you will receive an error."
),
stop_btn="Stop Generation",
multimodal=True,
textbox=chat_input,
chatbot=chatbot,
)
# Launch the Gradio app
demo.queue(api_open=False)
demo.launch(show_api=False, share=False)