Spaces:
Sleeping
Sleeping
File size: 4,767 Bytes
17dc18a 63e68a4 a504543 63e68a4 e1e839e 63e68a4 a504543 63e68a4 eb9e52f 63e68a4 eb9e52f 63e68a4 9fb87d0 63e68a4 e1e839e d9bab98 789180e 0d8813b 789180e 140e3d6 63e68a4 9a6c781 63e68a4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 |
import subprocess
# Installing flash_attn
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
import gradio as gr
from PIL import Image
from transformers import AutoModelForCausalLM
from transformers import AutoProcessor
from transformers import TextIteratorStreamer
import time
from threading import Thread
import torch
import spaces
model_id = "microsoft/Phi-3-vision-128k-instruct"
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="cuda", trust_remote_code=True, torch_dtype="auto")
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
model.to("cuda:0")
PLACEHOLDER = """
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
<h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">Microsoft's Phi3 Vision</h1>
<p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Phi-3-Vision is a 4.2B parameter multimodal model that brings together language and vision capabilities.</p>
</div>
"""
@spaces.GPU
def bot_streaming(message, history):
print(f'message is - {message}')
print(f'history is - {history}')
if message["files"]:
# message["files"][-1] is a Dict or just a string
if type(message["files"][-1]) == dict:
image = message["files"][-1]["path"]
else:
image = message["files"][-1]
else:
# if there's no image uploaded for this turn, look for images in the past turns
# kept inside tuples, take the last one
for hist in history:
if type(hist[0]) == tuple:
image = hist[0][0]
try:
if image is None:
# Handle the case where image is None
raise gr.Error("You need to upload an image for Phi3-Vision to work. Close the error and try again with an Image.")
except NameError:
# Handle the case where 'image' is not defined at all
raise gr.Error("You need to upload an image for Phi3-Vision to work. Close the error and try again with an Image.")
conversation = []
flag=False
for user, assistant in history:
if assistant is None:
#pass
flag=True
conversation.extend([{"role": "user", "content":""}])
continue
if flag==True:
conversation[0]['content'] = f"<|image_1|>\n{user}"
conversation.extend([{"role": "assistant", "content": assistant}])
flag=False
continue
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
if len(history) == 0:
conversation.append({"role": "user", "content": f"<|image_1|>\n{message['text']}"})
else:
conversation.append({"role": "user", "content": message['text']})
print(f"prompt is -\n{conversation}")
prompt = processor.tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True)
image = Image.open(image)
inputs = processor(prompt, image, return_tensors="pt").to("cuda:0")
streamer = TextIteratorStreamer(processor, **{"skip_special_tokens": True, "skip_prompt": True, 'clean_up_tokenization_spaces':False,})
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024, do_sample=False, temperature=0.0, eos_token_id=processor.tokenizer.eos_token_id,)
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
yield buffer
chatbot=gr.Chatbot(scale=1, placeholder=PLACEHOLDER)
chat_input = gr.MultimodalTextbox(interactive=True, file_types=["image"], placeholder="Enter message or upload file...", show_label=False)
with gr.Blocks(fill_height=True, ) as demo:
gr.ChatInterface(
fn=bot_streaming,
title="ChatGPTBots.net - Phi3 Vision 128K Instruct",
examples=[{"text": "Describe the image in details?", "files": ["./robo.jpg"]},
{"text": "What does the chart display?", "files": ["./dataviz.png"]},
{"text": "What is 3?", "files": ["./setofmark1.jpg"]},
{"text": "Count the number of apples.", "files": ["./setofmark6.png"]},
{"text": "I want to find a seat close to windows, where can I sit?", "files": ["./office1.jpg"]},
],
description="Upload an image and start chatting about it, or simply try one of the examples below. If you won't upload an image, you will receive an error.",
stop_btn="Stop Generation",
multimodal=True,
textbox=chat_input,
chatbot=chatbot,
cache_examples=False,
examples_per_page=3
)
demo.queue()
demo.launch(debug=True, quiet=True)
|