Spaces:
Running
on
Zero
Running
on
Zero
File size: 1,808 Bytes
38742d7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
import spaces
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
from flores import code_mapping
import platform
device = "cpu" if platform.system() == "Darwin" else "cuda"
MODEL_NAME = "facebook/nllb-200-distilled-600M"
code_mapping = dict(sorted(code_mapping.items(), key=lambda item: item[1]))
flores_codes = list(code_mapping.keys())
def load_model():
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME).to(device)
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
return model, tokenizer
model, tokenizer = load_model()
@spaces.GPU
def translate(text: str, src_lang: str, tgt_lang: str):
source = code_mapping[src_lang]
target = code_mapping[tgt_lang]
translator = pipeline(
"translation",
model=model,
tokenizer=tokenizer,
src_lang=source,
tgt_lang=target,
device=device,
)
output = translator(text, max_length=400)
return output[0]["translation_text"]
description = """
No Language Left Behind (NLLB) is a series of open-source models aiming to provide high-quality translations between 200 language."""
with gr.Blocks() as demo:
gr.Markdown("# No Language Left Behind (NLLB) Translation Demo")
gr.Markdown(description)
with gr.Row():
src_lang = gr.Dropdown(label="Source Language", choices=flores_codes)
target_lang = gr.Dropdown(label="Target Language", choices=flores_codes)
with gr.Row():
input_text = gr.Textbox(label="Input Text", lines=6)
with gr.Row():
btn = gr.Button("Translate text")
with gr.Row():
output = gr.Textbox(label="Output Text", lines=6)
btn.click(
translate,
inputs=[input_text, src_lang, target_lang],
outputs=output,
)
demo.launch()
|