File size: 4,893 Bytes
e669abf
 
f387393
261ea5b
 
e669abf
0e20e10
1b8c45e
e669abf
 
 
dc8ab1d
3812f64
f057421
998e5ed
 
3812f64
998e5ed
e669abf
9cc7c4e
 
84b3dcf
 
3812f64
9cc7c4e
 
 
 
2888c51
9cc7c4e
7f48a24
5809f13
68fbe9e
5809f13
 
 
 
68fbe9e
5809f13
 
 
 
55ecc4c
8a754d8
 
7c8cdc0
8a754d8
cbc546e
7f48a24
e669abf
579be1d
e669abf
7b30d5f
 
518ac36
4a73816
8742c0b
 
 
 
 
 
0e91bfe
7f48a24
5809f13
 
7c8cdc0
8a754d8
cbc546e
8a754d8
 
 
287e288
8a754d8
 
 
 
 
 
 
 
 
 
 
 
 
cbc546e
8a754d8
 
cbc546e
8a754d8
518ac36
8a754d8
5809f13
518ac36
e669abf
42c5082
 
e669abf
8a754d8
e669abf
8d4e312
cde5ee9
e669abf
 
 
 
 
42c5082
e669abf
 
cde5ee9
c78f4ac
 
 
5809f13
e669abf
cde5ee9
5809f13
a82cc2b
5809f13
 
55ecc4c
e669abf
 
42c5082
9cc7c4e
8a754d8
5809f13
f1c8fb6
e669abf
3553235
 
aa5b3ba
cbc546e
 
8a754d8
5809f13
 
e669abf
3812f64
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import streamlit as st
import gradio as gr
import shap
import numpy as np
import scipy as sp
import torch
import transformers
from transformers import pipeline
from transformers import RobertaTokenizer, RobertaModel
from transformers import AutoModelForSequenceClassification
from transformers import TFAutoModelForSequenceClassification
from transformers import AutoTokenizer, AutoModelForTokenClassification

import matplotlib.pyplot as plt
import sys
import csv

csv.field_size_limit(sys.maxsize)

device = "cuda:0" if torch.cuda.is_available() else "cpu"

tokenizer = AutoTokenizer.from_pretrained("vikvenk/ADR_Detection")  
model = AutoModelForSequenceClassification.from_pretrained("vikvenk/ADR_Detection").to(device)

# build a pipeline object to do predictions
pred = transformers.pipeline("text-classification", model=model, 
                             tokenizer=tokenizer, return_all_scores=True)

explainer = shap.Explainer(pred)

##
# classifier = transformers.pipeline("text-classification", model = "cross-encoder/qnli-electra-base")

# def med_score(x):
#     label = x['label']
#     score_1 = x['score']
#     return round(score_1,3)

# def sym_score(x):
#     label2sym= x['label']
#     score_1sym = x['score']
#     return round(score_1sym,3)

ner_tokenizer = AutoTokenizer.from_pretrained("d4data/biomedical-ner-all")
ner_model = AutoModelForTokenClassification.from_pretrained("d4data/biomedical-ner-all")

ner_pipe = pipeline("ner", model=ner_model, tokenizer=ner_tokenizer, aggregation_strategy="simple") # pass device=0 if using gpu
#

def adr_predict(x):
    encoded_input = tokenizer(x, return_tensors='pt')
    output = model(**encoded_input)
    scores = output[0][0].detach()
    scores = torch.nn.functional.softmax(scores)
   
    shap_values = explainer([str(x).lower()])
    # # Find the index of the class you want as the default reference (e.g., 'label_1')
    # label_1_index = np.where(np.array(explainer.output_names) == 'label_1')[0][0]

    # # Plot the SHAP values for a specific instance in your dataset (e.g., instance 0)
    # shap.plots.text(shap_values[label_1_index][0])

    local_plot = shap.plots.text(shap_values[0], display=False)

    # med = med_score(classifier(x+str(", There is a medication."))[0])
    # sym = sym_score(classifier(x+str(", There is a symptom."))[0])

    res = ner_pipe(x)
    
    entity_colors = {
    'Severity': 'red',
    'Sign_symptom': 'green',
    'Medication': 'lightblue',
    'Age': 'yellow',
    'Sex':'yellow',
    'Diagnostic_procedure':'gray',
    'Biological_structure':'silver'}

    htext = ""
    prev_end = 0

    for entity in res:
        start = entity['start']
        end = entity['end']
        word = entity['word'].replace("##", "")
        color = entity_colors[entity['entity_group']]
        
        htext += f"{x[prev_end:start]}<mark style='background-color:{color};'>{word}</mark>"
        prev_end = end

    htext += x[prev_end:]
   
    return {"Severe Reaction": float(scores.numpy()[1]), "Non-severe Reaction": float(scores.numpy()[0])}, local_plot,htext
    # ,{"Contains Medication": float(med), "No Medications": float(1-med)} , {"Contains Symptoms": float(sym), "No Symptoms": float(1-sym)}


def main(prob1):
    text = str(prob1).lower()
    obj = adr_predict(text)
    return obj[0],obj[1],obj[2]

title = "Welcome to **ADR Detector** 🪐"
description1 = """This app takes text (up to a few sentences) and predicts to what extent the text describes severe (or non-severe) adverse reaction to medicaitons. Please do NOT use for medical diagnosis."""

with gr.Blocks(title=title) as demo:
    gr.Markdown(f"## {title}")
    gr.Markdown(description1)
    gr.Markdown("""---""")
    prob1 = gr.Textbox(label="Enter Your Text Here:",lines=2, placeholder="Type it here ...")
    submit_btn = gr.Button("Analyze")

    with gr.Row():
        
        with gr.Column(visible=True) as output_col:
            label = gr.Label(label = "Predicted Label")
            

        with gr.Column(visible=True) as output_col:
            local_plot = gr.HTML(label = 'Shap:')
            htext = gr.HTML(label="NER")
            # med = gr.Label(label = "Contains Medication")
            # sym = gr.Label(label = "Contains Symptoms")
            
    submit_btn.click(
        main,
        [prob1],
        [label
         ,local_plot, htext
         # , med, sym
        ], api_name="adr"
    )
    
    with gr.Row():
        gr.Markdown("### Click on any of the examples below to see how it works:")
        gr.Examples([["A 35 year-old male had severe headache after taking Aspirin. The lab results were normal."],
                     ["A 35 year-old female had minor pain in upper abdomen after taking Acetaminophen."]], 
                    [prob1], [label,local_plot, htext
         # , med, sym
                             ], main, cache_examples=True)
    
demo.launch()