paragon-analytics
commited on
Commit
•
cbc546e
1
Parent(s):
80582bf
Update app.py
Browse files
app.py
CHANGED
@@ -45,8 +45,8 @@ def sym_score(x):
|
|
45 |
ner_tokenizer = AutoTokenizer.from_pretrained("d4data/biomedical-ner-all")
|
46 |
ner_model = AutoModelForTokenClassification.from_pretrained("d4data/biomedical-ner-all")
|
47 |
|
48 |
-
ner_pipe = pipeline("ner", model=
|
49 |
-
|
50 |
|
51 |
def adr_predict(x):
|
52 |
encoded_input = tokenizer(x, return_tensors='pt')
|
@@ -60,7 +60,26 @@ def adr_predict(x):
|
|
60 |
med = med_score(classifier(x+str(", There is a medication."))[0])
|
61 |
sym = sym_score(classifier(x+str(", There is a symptom."))[0])
|
62 |
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
return {"Severe Reaction": float(scores.numpy()[1]), "Non-severe Reaction": float(scores.numpy()[0])}, local_plot, {"Contains Medication": float(med), "No Medications": float(1-med)} , {"Contains Symptoms": float(sym), "No Symptoms": float(1-sym)},htext
|
66 |
|
@@ -85,7 +104,7 @@ with gr.Blocks(title=title) as demo:
|
|
85 |
with gr.Column(visible=True) as output_col:
|
86 |
label = gr.Label(label = "Predicted Label")
|
87 |
local_plot = gr.HTML(label = 'Shap:')
|
88 |
-
htext = gr.
|
89 |
|
90 |
with gr.Column(visible=True) as output_col:
|
91 |
med = gr.Label(label = "Contains Medication")
|
@@ -101,7 +120,8 @@ with gr.Blocks(title=title) as demo:
|
|
101 |
|
102 |
with gr.Row():
|
103 |
gr.Markdown("### Click on any of the examples below to see how it works:")
|
104 |
-
gr.Examples([["
|
|
|
105 |
[prob1], [label,local_plot, med, sym,htext], main, cache_examples=True)
|
106 |
|
107 |
-
demo.launch()
|
|
|
45 |
ner_tokenizer = AutoTokenizer.from_pretrained("d4data/biomedical-ner-all")
|
46 |
ner_model = AutoModelForTokenClassification.from_pretrained("d4data/biomedical-ner-all")
|
47 |
|
48 |
+
ner_pipe = pipeline("ner", model=ner_model, tokenizer=ner_tokenizer, aggregation_strategy="simple") # pass device=0 if using gpu
|
49 |
+
#
|
50 |
|
51 |
def adr_predict(x):
|
52 |
encoded_input = tokenizer(x, return_tensors='pt')
|
|
|
60 |
med = med_score(classifier(x+str(", There is a medication."))[0])
|
61 |
sym = sym_score(classifier(x+str(", There is a symptom."))[0])
|
62 |
|
63 |
+
res = ner_pipe(x)
|
64 |
+
|
65 |
+
entity_colors = {
|
66 |
+
'Severity': 'red',
|
67 |
+
'Sign_symptom': 'green',
|
68 |
+
'Medication': 'blue'}
|
69 |
+
|
70 |
+
htext = ""
|
71 |
+
prev_end = 0
|
72 |
+
|
73 |
+
for entity in res:
|
74 |
+
start = entity['start']
|
75 |
+
end = entity['end']
|
76 |
+
word = entity['word'].replace("##", "")
|
77 |
+
color = entity_colors[entity['entity_group']]
|
78 |
+
|
79 |
+
htext += f"{x[prev_end:start]}<mark style='background-color:{color};'>{word}</mark>"
|
80 |
+
prev_end = end
|
81 |
+
|
82 |
+
htext += x[prev_end:]
|
83 |
|
84 |
return {"Severe Reaction": float(scores.numpy()[1]), "Non-severe Reaction": float(scores.numpy()[0])}, local_plot, {"Contains Medication": float(med), "No Medications": float(1-med)} , {"Contains Symptoms": float(sym), "No Symptoms": float(1-sym)},htext
|
85 |
|
|
|
104 |
with gr.Column(visible=True) as output_col:
|
105 |
label = gr.Label(label = "Predicted Label")
|
106 |
local_plot = gr.HTML(label = 'Shap:')
|
107 |
+
htext = gr.HTML(label="NER")
|
108 |
|
109 |
with gr.Column(visible=True) as output_col:
|
110 |
med = gr.Label(label = "Contains Medication")
|
|
|
120 |
|
121 |
with gr.Row():
|
122 |
gr.Markdown("### Click on any of the examples below to see how it works:")
|
123 |
+
gr.Examples([["A 35 year-old male had severe headache after taking Aspirin. The lab results were normal."],
|
124 |
+
["A 35 year-old female had minor pain in upper abdomen after taking Acetaminophen."]],
|
125 |
[prob1], [label,local_plot, med, sym,htext], main, cache_examples=True)
|
126 |
|
127 |
+
demo.launch()
|