ca
Browse files
app.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
2 |
+
|
3 |
+
model_name_or_path = "TheBloke/Unholy-v1-12L-13B-GPTQ"
|
4 |
+
# To use a different branch, change revision
|
5 |
+
# For example: revision="main"
|
6 |
+
model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
|
7 |
+
device_map="auto",
|
8 |
+
trust_remote_code=False,
|
9 |
+
revision="main")
|
10 |
+
|
11 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
|
12 |
+
|
13 |
+
prompt = "Tell me about AI"
|
14 |
+
prompt_template=f'''Below is an instruction that describes a task. Write a response that appropriately completes the request.
|
15 |
+
|
16 |
+
### Instruction:
|
17 |
+
{prompt}
|
18 |
+
|
19 |
+
### Response:
|
20 |
+
|
21 |
+
'''
|
22 |
+
|
23 |
+
print("\n\n*** Generate:")
|
24 |
+
|
25 |
+
input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
|
26 |
+
output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512)
|
27 |
+
print(tokenizer.decode(output[0]))
|
28 |
+
|
29 |
+
# Inference can also be done using transformers' pipeline
|
30 |
+
|
31 |
+
print("*** Pipeline:")
|
32 |
+
pipe = pipeline(
|
33 |
+
"text-generation",
|
34 |
+
model=model,
|
35 |
+
tokenizer=tokenizer,
|
36 |
+
max_new_tokens=512,
|
37 |
+
do_sample=True,
|
38 |
+
temperature=0.7,
|
39 |
+
top_p=0.95,
|
40 |
+
top_k=40,
|
41 |
+
repetition_penalty=1.1
|
42 |
+
)
|
43 |
+
|
44 |
+
print(pipe(prompt_template)[0]['generated_text'])
|