File size: 5,769 Bytes
87928b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from llama_cpp import Llama
from concurrent.futures import ThreadPoolExecutor, as_completed
from tqdm import tqdm
import uvicorn
from dotenv import load_dotenv
from difflib import SequenceMatcher
import re
from spaces import GPU
import httpx

# Cargar variables de entorno
load_dotenv()

# Inicializar aplicaci贸n FastAPI
app = FastAPI()

# Diccionario global para almacenar los modelos
global_data = {
    'models': []
}

# Configuraci贸n de los modelos (incluyendo los nuevos)
model_configs = [
    {"repo_id": "Ffftdtd5dtft/gpt2-xl-Q2_K-GGUF", "filename": "gpt2-xl-q2_k.gguf", "name": "GPT-2 XL"},
    {"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-8B-Instruct-Q2_K-GGUF", "filename": "meta-llama-3.1-8b-instruct-q2_k.gguf", "name": "Meta Llama 3.1-8B Instruct"},
    # Otros modelos omitidos por espacio
    {"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-70B-Instruct-Q2_K-GGUF", "filename": "meta-llama-3.1-70b-instruct-q2_k.gguf", "name": "Meta Llama 3.1-70B Instruct"},
    {"repo_id": "Ffftdtd5dtft/codegemma-2b-IQ1_S-GGUF", "filename": "codegemma-2b-iq1_s-imat.gguf", "name": "Codegemma 2B"},
    {"repo_id": "Ffftdtd5dtft/Mistral-Nemo-Instruct-2407-Q2_K-GGUF", "filename": "mistral-nemo-instruct-2407-q2_k.gguf", "name": "Mistral Nemo Instruct 2407"}
]

# Clase para gestionar modelos
class ModelManager:
    def __init__(self):
        self.models = []
    
    def load_model(self, model_config):
        print(f"Cargando modelo: {model_config['name']}...")
        return {"model": Llama.from_pretrained(repo_id=model_config['repo_id'], filename=model_config['filename']), "name": model_config['name']}
    
    @GPU(duration=0)
    def load_all_models(self):
        print("Iniciando carga de modelos...")
        with ThreadPoolExecutor(max_workers=len(model_configs)) as executor:
            futures = [executor.submit(self.load_model, config) for config in model_configs]
            models = []
            for future in tqdm(as_completed(futures), total=len(model_configs), desc="Cargando modelos", unit="modelo"):
                try:
                    model = future.result()
                    models.append(model)
                    print(f"Modelo cargado exitosamente: {model['name']}")
                except Exception as e:
                    print(f"Error al cargar el modelo: {e}")
        print("Todos los modelos han sido cargados.")
        return models

# Instanciar ModelManager y cargar modelos una sola vez
model_manager = ModelManager()
global_data['models'] = model_manager.load_all_models()

# Modelo global para la solicitud de chat
class ChatRequest(BaseModel):
    message: str
    top_k: int = 50
    top_p: float = 0.95
    temperature: float = 0.7

# Funci贸n para generar respuestas de chat
def generate_chat_response(request, model_data):
    try:
        user_input = normalize_input(request.message)
        llm = model_data['model']
        response = llm.create_chat_completion(
            messages=[{"role": "user", "content": user_input}],
            top_k=request.top_k,
            top_p=request.top_p,
            temperature=request.temperature
        )
        reply = response['choices'][0]['message']['content']
        return {"response": reply, "literal": user_input, "model_name": model_data['name']}
    except Exception as e:
        return {"response": f"Error: {str(e)}", "literal": user_input, "model_name": model_data['name']}

def normalize_input(input_text):
    return input_text.strip()

def remove_duplicates(text):
    text = re.sub(r'(Hello there, how are you\? \[/INST\]){2,}', 'Hello there, how are you? [/INST]', text)
    text = re.sub(r'(How are you\? \[/INST\]){2,}', 'How are you? [/INST]', text)
    text = text.replace('[/INST]', '')
    lines = text.split('\n')
    unique_lines = list(dict.fromkeys(lines))
    return '\n'.join(unique_lines).strip()

def remove_repetitive_responses(responses):
    seen = set()
    unique_responses = []
    for response in responses:
        normalized_response = remove_duplicates(response['response'])
        if normalized_response not in seen:
            seen.add(normalized_response)
            unique_responses.append(response)
    return unique_responses

# Manejo de errores en la inicializaci贸n de modelos (traza mencionada en el error)
def handle_initialization_error(allow_token):
    try:
        client = httpx.Client()
        pid = 0  # Variable que simula el proceso actual
        assert client.allow(allow_token=allow_token, pid=pid) == httpx.codes.OK
    except AssertionError:
        raise HTTPException(status_code=500, detail="Error en la inicializaci贸n del cliente Spaces")

# Ruta para generar chat en m煤ltiples modelos
@app.post("/chat/")
async def chat(request: ChatRequest):
    try:
        # Simulaci贸n del error `AssertionError` durante la inicializaci贸n
        allow_token = "test_token"
        handle_initialization_error(allow_token)

        with ThreadPoolExecutor() as executor:
            futures = [executor.submit(generate_chat_response, request, model) for model in global_data['models']]
            responses = [future.result() for future in as_completed(futures)]
        unique_responses = remove_repetitive_responses(responses)
        return {"responses": unique_responses}
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Error procesando la solicitud: {str(e)}")

# Uso de template `chat_template.default`
chat_template = """
User: {message}
Bot: {response}
"""

# Plantilla de respuesta de chat
def render_chat_template(message, response):
    return chat_template.format(message=message, response=response)

if __name__ == "__main__":
    uvicorn.run(app, host="0.0.0.0", port=8000)