Uhhy's picture
Update app.py
6fc515c verified
raw
history blame
4.95 kB
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from llama_cpp import Llama
from concurrent.futures import ThreadPoolExecutor, as_completed
from tqdm import tqdm
import uvicorn
from dotenv import load_dotenv
from difflib import SequenceMatcher
import threading
load_dotenv()
app = FastAPI()
# Configuraci贸n de los modelos
model_configs = [
{"repo_id": "Ffftdtd5dtft/gpt2-xl-Q2_K-GGUF", "filename": "gpt2-xl-q2_k.gguf"},
{"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-8B-Instruct-Q2_K-GGUF", "filename": "meta-llama-3.1-8b-instruct-q2_k.gguf"},
{"repo_id": "Ffftdtd5dtft/gemma-2-9b-it-Q2_K-GGUF", "filename": "gemma-2-9b-it-q2_k.gguf"},
{"repo_id": "Ffftdtd5dtft/gemma-2-27b-Q2_K-GGUF", "filename": "gemma-2-27b-q2_k.gguf"},
]
def load_model(model_config):
print(f"Cargando modelo {model_config['repo_id']}...")
return Llama.from_pretrained(repo_id=model_config['repo_id'], filename=model_config['filename'])
def load_all_models():
print("Iniciando carga de modelos...")
with ThreadPoolExecutor(max_workers=len(model_configs)) as executor:
futures = [executor.submit(load_model, config) for config in model_configs]
models = []
for future in tqdm(as_completed(futures), total=len(model_configs), desc="Cargando modelos", unit="modelo"):
try:
model = future.result()
models.append(model)
print(f"Modelo cargado exitosamente: {model_configs[len(models)-1]['repo_id']}")
except Exception as e:
print(f"Error al cargar el modelo: {e}")
print("Todos los modelos han sido cargados.")
return models
llms = load_all_models()
class ChatRequest(BaseModel):
message: str
top_k: int = 50
top_p: float = 0.95
temperature: float = 0.7
def generate_chat_response(request, llm):
try:
user_input = normalize_input(request.message)
response = llm.create_chat_completion(
messages=[{"role": "user", "content": user_input}],
top_k=request.top_k,
top_p=request.top_p,
temperature=request.temperature
)
reply = response['choices'][0]['message']['content']
return {"response": reply, "literal": user_input}
except Exception as e:
return {"response": f"Error: {str(e)}", "literal": user_input}
def normalize_input(input_text):
return input_text.strip()
def filter_duplicates(responses):
seen = set()
unique_responses = []
for response in responses:
lines = response.split('\n')
unique_lines = set()
for line in lines:
if line not in seen:
seen.add(line)
unique_lines.add(line)
unique_responses.append('\n'.join(unique_lines))
return unique_responses
def select_best_response(responses):
print("Filtrando respuestas...")
unique_responses = filter_duplicates(responses)
unique_responses = list(set(unique_responses))
coherent_responses = filter_by_coherence(unique_responses)
best_response = filter_by_similarity(coherent_responses)
return best_response
def filter_by_coherence(responses):
# Implementa aqu铆 un filtro de coherencia si es necesario
return responses
def filter_by_similarity(responses):
responses.sort(key=len, reverse=True)
best_response = responses[0]
for i in range(1, len(responses)):
ratio = SequenceMatcher(None, best_response, responses[i]).ratio()
if ratio < 0.9:
best_response = responses[i]
break
return best_response
def worker_function(llm, request, progress_bar):
print(f"Generando respuesta con el modelo...")
response = generate_chat_response(request, llm)
progress_bar.update(1)
return response
@app.post("/generate_chat")
async def generate_chat(request: ChatRequest):
if not request.message.strip():
raise HTTPException(status_code=400, detail="The message cannot be empty.")
print(f"Procesando solicitud: {request.message}")
responses = []
num_models = len(llms)
with tqdm(total=num_models, desc="Generando respuestas", unit="modelo") as progress_bar:
with ThreadPoolExecutor(max_workers=num_models) as executor:
futures = [executor.submit(worker_function, llm, request, progress_bar) for llm in llms]
for future in as_completed(futures):
try:
response = future.result()
responses.append(response['response'])
except Exception as exc:
print(f"Error en la generaci贸n de respuesta: {exc}")
best_response = select_best_response(responses)
print(f"Mejor respuesta seleccionada: {best_response}")
return {
"best_response": best_response,
"all_responses": responses
}
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=7860)