Uhhy commited on
Commit
36c9f0a
1 Parent(s): e038371

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -2
app.py CHANGED
@@ -18,7 +18,7 @@ models = [
18
  {"repo_id": "Ffftdtd5dtft/gemma-2-27b-Q2_K-GGUF", "filename": "gemma-2-27b-q2_k.gguf"},
19
  ]
20
 
21
- # Cargar modelos en memoria
22
  llms = [Llama.from_pretrained(repo_id=model['repo_id'], filename=model['filename']) for model in models]
23
 
24
  class ChatRequest(BaseModel):
@@ -29,7 +29,8 @@ class ChatRequest(BaseModel):
29
 
30
  def generate_chat_response(request, llm):
31
  try:
32
- user_input = request.message
 
33
  response = llm.create_chat_completion(
34
  messages=[{"role": "user", "content": user_input}],
35
  top_k=request.top_k,
@@ -41,6 +42,10 @@ def generate_chat_response(request, llm):
41
  except Exception as e:
42
  return {"response": f"Error: {str(e)}", "literal": user_input}
43
 
 
 
 
 
44
  def select_best_response(responses, request):
45
  coherent_responses = filter_by_coherence([resp['response'] for resp in responses], request)
46
  best_response = filter_by_similarity(coherent_responses)
@@ -62,6 +67,9 @@ def filter_by_similarity(responses):
62
 
63
  @app.post("/generate_chat")
64
  async def generate_chat(request: ChatRequest):
 
 
 
65
  with ThreadPoolExecutor(max_workers=None) as executor:
66
  futures = [executor.submit(generate_chat_response, request, llm) for llm in llms]
67
  responses = []
 
18
  {"repo_id": "Ffftdtd5dtft/gemma-2-27b-Q2_K-GGUF", "filename": "gemma-2-27b-q2_k.gguf"},
19
  ]
20
 
21
+ # Cargar modelos en memoria solo una vez
22
  llms = [Llama.from_pretrained(repo_id=model['repo_id'], filename=model['filename']) for model in models]
23
 
24
  class ChatRequest(BaseModel):
 
29
 
30
  def generate_chat_response(request, llm):
31
  try:
32
+ # Normalización del mensaje para manejo robusto
33
+ user_input = normalize_input(request.message)
34
  response = llm.create_chat_completion(
35
  messages=[{"role": "user", "content": user_input}],
36
  top_k=request.top_k,
 
42
  except Exception as e:
43
  return {"response": f"Error: {str(e)}", "literal": user_input}
44
 
45
+ def normalize_input(input_text):
46
+ # Implementar aquí cualquier lógica de normalización que sea necesaria
47
+ return input_text.strip()
48
+
49
  def select_best_response(responses, request):
50
  coherent_responses = filter_by_coherence([resp['response'] for resp in responses], request)
51
  best_response = filter_by_similarity(coherent_responses)
 
67
 
68
  @app.post("/generate_chat")
69
  async def generate_chat(request: ChatRequest):
70
+ if not request.message.strip():
71
+ raise HTTPException(status_code=400, detail="The message cannot be empty.")
72
+
73
  with ThreadPoolExecutor(max_workers=None) as executor:
74
  futures = [executor.submit(generate_chat_response, request, llm) for llm in llms]
75
  responses = []